Distribution Characteristics of Geohazards Induced by the Lushan Earthquake and Their Comparisons wi

来源 :Journal of Earth Science | 被引量 : 0次 | 上传用户:mcl8023
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The Lushan Earthquake induced a large number of geohazards. They are widely distributed and caused serious damages. The basic characteristics, formation mechanisms and typical cases of geohazards induced by Lushan Earthquake are described, and compares to the relationships of Lushan and Wenchuan earthquakes between geohazards and earthquake magnitude, geomorphology, slope angle, elevation and seismic intensity in the most affected areas in the article.(1) The numbers and volumes of landslides and rockslides differ significantly between the two earthquakes due to their differing magnitudes. The Lushan Earthquake is associated with fewer and smaller-magnitude geohazards, within the immediate area, which mainly consist of small-and medium-sized shallow landslides and rockslides, and occur on steep slopes and mountain valleys. The largest landslide induced by Lushan Earthquake is the Gangoutou Landslide debris flow with a residual volume of about 2.48×106 m3. The most dangerous debris flow is at Lengmugou gulley in Baoxing County, which has similar geomorphological features and disaster modes as a previous disaster in Zhouqu County, Gansu Province.(2) Geohazards induced by the Lushan Earthquake show four mechanisms: cracking-rockslides-collision- scraping and then debris flows, cracking-rockslides, vibration-rainfall-rockslides-landslide and then debris flow, vibration-throwing or scrolling.(3) There are significant similarities and differences between the geohazards induced by these two earthquakes. The types of geohazards are the same but the volume, quantity and other factors differ: geohazards are concentrated on slope angles of 10°–40° in the Lushan Earthquake area, especially within 10°–20°, and at absolute elevation of 500–2000 m above sea level(a.s.l.). Geohazards within the Wenchuan Earthquake area are concentrated on steeper slope angles of 30°–40° at higher absolute elevations of 1500–2000 m.s.l.. The basic characteristics, formation mechanisms and typical cases of geohazards induced by Lushan Earthquake are described, and compares to the relationships of Lushan and Wenchuan earthquakes between geohazards and earthquake magnitude, geomorphology, slope angle, elevation and seismic intensity in the most affected areas in the article. (1) The numbers and volumes of landslides and rockslides differ significantly between the two earthquakes due to their differing magnitudes. The Lushan Earthquake is associated with the fewer and smaller-magnitude geohazards, within the immediate area, which primarily consist of small-and medium-sized shallow landslides and rockslides, and occur on steep slopes and mountain valleys. The largest landslide induced by Lushan Earthquake is the Gangoutou Landslide debris flow with a residual volume of about 2.48 × 106 m3. The most dangerous debris flo w is at Lengmugou gulley in Baoxing County, which has similar geomorphological features and disaster modes as a previous disaster in Zhouqu County, Gansu Province. (2) Geohazards induced by the Lushan Earthquake show four mechanisms: cracking-rockslides-collision-scraping and then debris flows, cracking-rockslides, vibration-rainfall-rockslides-landslide and then debris flow, vibration-throwing or scrolling. (3) There are significant similarities and differences between the geohazards induced by these two earthquakes. The types of geohazards are the same but the volume, quantity and other factors differ: geohazards are concentrated on slope angles of 10 ° -40 ° in the Lushan Earthquake area, especially within 10-20 °, and at absolute elevation of 500-2000 m above sea level (asl ). Geohazards within the Wenchuan Earthquake area are concentrated on steeper slope angles of 30 ° -40 ° at higher absolute elevations of 1500-2000 msl.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
After the Wenchuan MS 8.0 Earthquake, which occurred on May 12, 2008, in Sichuan Province, China, we conducted a series of hydraulic fracturing stress measureme
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
义务教育阶段学校所培养的对象正处于性格等的形成时期,德育工作的成效对学生的世界观、人生观和价值观形成起着至关重要的作用。那么,学校如何利用有效途径来获得德 The ta
For unveiling coal-bearing source rocks in terrestrial-marine transitional sequences, the sequence stratigraphic framework and sedimentary facies of Lower Oligo
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
This paper presents results from ground penetrating radar surveys using the SIR-10 B GPR instrument(manufactured by Geophysical Survey System Inc., USA), with 4
本文通过对荣华二采区10
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊