论文部分内容阅读
As one of intriguing physical results of electronic reconstruction,the metal-insulator transition plays an important role in exploring new electronic devices.In this study,the density functional theory is employed to investigate the metal-insulator transition in(LaTiO3)m/(CaVO3)n superlattices.Herein,three kinds of physical avenues,i.e.,stacking orienta-tion,epitaxial strain,and thickness periods,are used to tune the metal-insulator transition.Our calculations find that the[001]-and[110]-oriented(LaTiO3)1/(CaVO3)1 superlattices on SrTiO3 substrate are insulating,while[lll]-oriented case is metallic.Such metallic behavior in[111]orientation can also be modulated by epitaxial strain.Besides the structural ori-entation and strain effect,the highly probable metal-insulator transition is presented in(LaTiO3)m/(CaVO3)n superlattices with increasing thickness.In addition,several interesting physical phenomena have also been revealed,such as selective charge transfer,charge ordering,and orbital ordering.