Designing nonlinear thermal devices and metamaterials under the Fourier law:A route to nonlinear the

来源 :物理学前沿 | 被引量 : 0次 | 上传用户:dellson
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Nonlinear heat transfer can be exploited to reveal novel transport phenomena and thus enhance peo-ple\'s ability to manipulate heat flux at will.However,there has not been a mature discipline called nonlinear thermotics like its counterpart in optics or acoustics to make a systematic summary of relevant researches.In the current review,we focus on recent progress in an important part of non-linear heat transfer,i.e.,tailoring nonlinear thermal devices and metamaterials under the Fourier law,especially with temperature-dependent thermal conductivities.We will present the basic designing techniques including solving the equation directly and the transformation theory.Tuning nonlinearity coming from multi-physical effects,and how to calculate effective properties of nonlinear conductive composites using the effective medium theory are also included.Based on these theories,researchers have successfully designed various functional materials and devices such as the thermal diodes,ther-mal transistors,thermal memory elements,energy-free thermostats,and intelligent thermal materials,and some of them have also been realized in experiments.Further,these phenomenological works can provide a feasible route for the development of nonlinear thermotics.
其他文献
Negative thermal expansion (NTE) of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications.Progresses in this field develop markedly and update continuously our knowled
Heterojunction structure has been extensively employed for the design of novel catalysts.In the present study,density functional theory was utilized to investigate the electronic structure and hydrogen evolution performance of Ti3C2O2 MXene quantum dots/g
Spiral spin liquids are unique classical spin liquids that occur in many frustrated spin systems,but do not comprise a new phase of matter.Owing to extensive classical ground-state degeneracy,the spins in a spiral spin liquid thermally fluctuate cooperati
As high-performance organic semiconductors,π-conjugated polymers have attracted much attention due to their charming advantages including low-cost,solution processability,mechanical flexibility,and tunable optoelectronic properties.During the past several
Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems.On a quantum computer,only log2 N qubits are required for the simulation of an N-dimensional quantum system,hence simul
With the rapidly increasing integration density and power density in nanoscale electronic devices,the thermal management concerning heat generation and energy harvesting becornes quite crucial.Since phonon is the major heat carrier in semiconductors,therm
In conventional quantum mechanics,quantum no-deleting and no-cloning theorems indicate that two different and nonorthogonal states cannot be perfectly and deterministically deleted and cloned,re-spectively.Here,we investigate the quantum deleting and clon
氢气具有无毒、能量密度高以及燃烧过程零污染等优点,被誉为是未来代替化石能源的优质新型能源载体.探索高效的、可持续的制氢技术对氢气能源发展至关重要.其中,光电化学水分解电池以太阳能作为驱动力将水分解成氢气和氧气,是解决能源和环境危机的理想途径之一.α-Fe2O3是一种窄带隙(~2.1 eV)半导体,可以吸收约40%的太阳光,同时具有天然丰度高、成本低等优点,是目前备受关注的光阳极材料.然而,由于α-Fe2O3空穴扩散距离短和表面产氧动力学慢等缺点,导致α-Fe2O3的光电分解水效率仍然较低.针对上述问题,目
Alkaline-earth-like (AEL) atoms with two valence electrons and a nonzero nuclear spin can be excited to Rydberg state for quantum computing.Typical AEL ground states possess no hyperfine splitting,but unfortunately a GHz-scale splitting seems necessary fo
The large-scale production of ammonia mainly depends on the Haber-Bosch process,which will lead to the problems of high energy consumption and carbon dioxide emission.Electrochemical nitrogen fixation is considered to be an environmental friendly and sust