论文部分内容阅读
摘要:针对当前数字电路课程设计中存在的问题,研制了基于FPGA的实验教学平台。实验平台能软硬件结合,让课程设计在实践教学中将设计—仿真—实现连为一体,提高了效率;使学生了解、接触了电子行业最新的技术方法及制作过程。探讨了数字电路课程设计教学改革的措施及取得的效果。实践证明,通过课程的改革提高了学生的工程应用能力。
关键词:课程设计;实验教学;工程应用能力
作者简介:莫琳(1969-),女,广西玉林人,广西大学计算机与电子信息学院,实验师。
基金项目:本文系广西大学实验室建设与实验教学改革项目(项目编号:2100702)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)14-0122-02
EDA(Electronic Design Automation,简称“EDA”)是电子设计的主潮流和方向,它的发展推动了电子行业电子技术的快速发展,也促使了高校电子技术课程必须进行相关教改。EDA的引入对数字电路课程设计的教学改革、系统设计、技术应用、方法、思路具有重要意义;把理论综合地运用到一些实际的较复杂的电子电路系统工程中去,锻炼了学生的实践基本技能,培养了学生的工程应用能力及创新能力。本文结合广西大学数字电路课程设计实验教学的现状、存在的问题,重新研制了实验教学平台,探讨了数字电路课程设计教学改革的措施及取得的成效。
一、数字电子技术实验室现状及存在的问题
目前,数字电子技术实验所使用的设备主要是以装有74系列芯片为主的实验设备,[1]其实验结果显示于实验箱上的发光二级管及数码管,主要能满足单纯的验证性实验,但也存在实验内容受限、扩展性不足等诸多问题。
在教学过程中,首先向学生布置题目,学生对题目进行系统设计,然后使用Multisim进行仿真测试,最后用硬件实现电路。[2]通过仿真检测学生的设计方案是否可行,只是模拟实现,没有真正实现设计结果,要看到结果只有通过实验箱连线,用万能板搭建,或用PCB制板等方式。这些方法存在着诸多弊端:对于学生设计出来的复杂的电路,需要多块芯片、多条导线才能接出;电路接好后容易出现接错线、电路接触不良、损坏芯片、排查电路困难,以及PCB制板过程繁琐等问题,这些问题花费了学生大量的时间和精力。
二、实验平台的设计与功能特点
随着数字电子技术的发展,现场可编程器件(FPGA)的出现,给数字电路的设计带来了很大的便利,设计更为灵活。考虑到数字技术的发展、实验教学的需求和任务,决定采用以FPGA芯片为核心的实验平台,这样不仅能够满足现今的教学需求,同时能够向学生展示最新技术的发展,激发学生学习数字技术的兴趣。[3,4]
实验平台采用核心板+功能扩展板的方式,系统方框图见图1。
1.主要功能
(1)输入模块。输入模块包括USB供电模块、下载模块、独立按键和八位矩阵按键。其中供电模块采用常见的Mini USB接口,可从电脑或者USB充电设备中获得+5V的电源。下载模块提供JTAG和AS两种下载模式,JTAG模式通常用于程序代码的测试和验证部分,AS模式则适用于程序代码的应用环节。输入按键是控制设备必不可少的部分,在核心板上提供了四位独立按键,在功能扩展板上提供了八位矩阵按键,为满足教学和创新实践应用提供了有力保证。
(2)输出模块。输出模块主要集中在功能扩展板上,集合目前教学任务的该功能扩展板包含了七段数码管、路口红绿灯模块、蜂鸣器和LED指示灯等。根据不同的教学任务将原理图或代码和实验平台相结合,系统就可以根据不同的实验操作指令向相应设备传送信号,并显示不同的实验结果。同时可以根据不同要求更换和升级功能扩展板,达到充分利用资源的效果。
(3)核心模块FPGA芯片。选用Altera EP1C6T144C8作为核心单元,实验平台的集成开发环境为QuartusⅡ,其中设计输入主要有原理图输入和HDL输入两种方式。学生已经学习了数字电子技术的相关课程,对各种基本的数字电路单元有了比较深入的了解和认识,在进行实验的过程中主要是通过原理图输入,经过仿真和综合后配置到FPGA芯片中,然后在实验平台上直接观察实验结果。教学流程如图2所示。
使用原理图输入的方式适合刚学完数字电子技术的学生,该方式非常直观、形象。同时鼓励学生学习Verilog HDL或VHDL,基于可移植性和规范化方面的考虑,绝大部分FPGA设计和ASIC设计最终都将统一到HDL(硬件描述语言)平台上,为以后进入FPGA的开发领域打好基础。
2.实验平台的特点
设计开发板体积小,便于携带。学生可借出在宿舍或在开放实验室完成设计,设计灵活方便,学生可随意安排自己的时间。QuartusⅡ软件中,提供的元件基本满足设计的需求,减少了购买元件的成本。真实性强,学生在仿真设计过程中,可直接看到设计与实际是否相符,对出现的错误可随时修改。将设计—仿真—实现连成一体,提高了学生的学习热情。
三、数字电路课程设计实验平台在课程设计中的实施
1.优化设计内容
新的数字电路课程设计实验平台设计好后,对课程设计的实验内容做了调整。
首先在选题时扩大了范围,其次适当增加了难度。对于较复杂的设计电路,都可通过软硬件结合的实验平台实现。允许两人一组,鼓励一人一组。让学生在做课题时重在设计。学生根据自己的知识水平采取不同的设计方法实现,选出最佳方案。把设计好的电路下载到试验平台上就可直接看出设计成功与否。
2.注重实验过程
(1)理论指导,布置设计。在理论教学阶段,让学生掌握数字电路系统的一般设计方法。对于复杂的数字电路系统,由整体到局部进行组合,再由局部到整体进行设计,要求学生学会模块化的设计方法;然后布置设计任务及题目要实现的具体功能。 (2)学生查阅资料。学生根据题目要求,到图书管、网络、资料室了解相关技术应用,参考相关方案,根据自己的能力选定题目、制定设计方案。在这个阶段,教师只是起引导作用,要求学生对设计的课题要充分理解并掌握其原理,这样才能为后续的仿真设计、电路板调试打下良好的理论基础。
(3)系统仿真设计及软硬件系统调试。在数字电路课程设计中引入EDA仿真软件教学,把EDA技术应用于数字电路课程设计,让多数学生能在短时间内掌握其使用方法,并运用自如。
学生们在校期间如能熟练掌握EDA技术,对提高自己的工程应用能力,适应社会需求,找到合适自己发展的工作非常有利。
(4)撰写实验报告。撰写课程设计报告。课程设计报告是一份严谨的科研报告,要求学生提交设计方案、设计过程、元器件的选择、逻辑算法、调试方案、调试中处理问题与解决问题的方式,以及实验结果、数据分析、报告总结等。[5]严格的要求对培养学生实事求是的工作作风有积极的促进作用,为今后撰写毕业设计打下了坚实的基础。
3.完善的考核制度
合理给出成绩是培养学生工程应用能力的动力。[6]它不仅反映了学生的真实水平,还能激发学生的学习热情和创造欲望。
考核方式采用小组答辩的形式,同样题型的学生组成同一小组,在小组会上学生介绍自己的设计方案、实现方式,并当场演示实验结果。教师和其他学生对其设计进行提问和讨论,并在同一题型中选出最佳方案,每组最佳方案在全班总结会上展示,让学生了解自己的不足,取长补短。
实践教学表明,学生们通过数字电路课程设计这门和实践紧密联系的课程的训练,工程应用能力得到了大大提高。
四、结束语
目前电子行业人才竞争激烈,不但要求学生理论基础扎实,而且要有较强的自学能力及实践动手能力。通过使用新的实验平台,学生们了解、接触了电子行业最新的技术方法及制作过程,开阔了设计思路,扩展了学生实验设计的范围。数字电路课程设计的训练为后续课程中更为复杂的电路设计、电子制作打下了良好基础,每年都有不少大三、大四的学生,在全国、全区的大学生电子设计竞赛中获奖,这些成就都得益于数字电路课程设计的训练。
参考文献:
[1]周建国,王小兰.虚拟实验系统在“数字逻辑”实验教学中的应用[J].实验室研究与探索,2011,(10):78-80.
[2]高辉.多功能综合性实验方法研究[J].计算机教育,2010,(2):154-140.
[3]刘英,李佳,徐兆君,等.工程素质与创新精神的培养与实践[J].化工高等教育,2011,(2):25-27.
[4]温显斌,王法玉.构筑实践教学体系,强化应用能力培养[J].计算机教育,2010,(10):126-128.
[5]李小珉,叶晓慧.深化《数字电路与逻辑设计》课程改革[J].长江大学学报,2004,1(4):124-125.
[6]李祖明,胡仁杰.综合设计类课程建设的思考与实践[J].实验室研究与探索,2008,(12):109-111.
关键词:课程设计;实验教学;工程应用能力
作者简介:莫琳(1969-),女,广西玉林人,广西大学计算机与电子信息学院,实验师。
基金项目:本文系广西大学实验室建设与实验教学改革项目(项目编号:2100702)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)14-0122-02
EDA(Electronic Design Automation,简称“EDA”)是电子设计的主潮流和方向,它的发展推动了电子行业电子技术的快速发展,也促使了高校电子技术课程必须进行相关教改。EDA的引入对数字电路课程设计的教学改革、系统设计、技术应用、方法、思路具有重要意义;把理论综合地运用到一些实际的较复杂的电子电路系统工程中去,锻炼了学生的实践基本技能,培养了学生的工程应用能力及创新能力。本文结合广西大学数字电路课程设计实验教学的现状、存在的问题,重新研制了实验教学平台,探讨了数字电路课程设计教学改革的措施及取得的成效。
一、数字电子技术实验室现状及存在的问题
目前,数字电子技术实验所使用的设备主要是以装有74系列芯片为主的实验设备,[1]其实验结果显示于实验箱上的发光二级管及数码管,主要能满足单纯的验证性实验,但也存在实验内容受限、扩展性不足等诸多问题。
在教学过程中,首先向学生布置题目,学生对题目进行系统设计,然后使用Multisim进行仿真测试,最后用硬件实现电路。[2]通过仿真检测学生的设计方案是否可行,只是模拟实现,没有真正实现设计结果,要看到结果只有通过实验箱连线,用万能板搭建,或用PCB制板等方式。这些方法存在着诸多弊端:对于学生设计出来的复杂的电路,需要多块芯片、多条导线才能接出;电路接好后容易出现接错线、电路接触不良、损坏芯片、排查电路困难,以及PCB制板过程繁琐等问题,这些问题花费了学生大量的时间和精力。
二、实验平台的设计与功能特点
随着数字电子技术的发展,现场可编程器件(FPGA)的出现,给数字电路的设计带来了很大的便利,设计更为灵活。考虑到数字技术的发展、实验教学的需求和任务,决定采用以FPGA芯片为核心的实验平台,这样不仅能够满足现今的教学需求,同时能够向学生展示最新技术的发展,激发学生学习数字技术的兴趣。[3,4]
实验平台采用核心板+功能扩展板的方式,系统方框图见图1。
1.主要功能
(1)输入模块。输入模块包括USB供电模块、下载模块、独立按键和八位矩阵按键。其中供电模块采用常见的Mini USB接口,可从电脑或者USB充电设备中获得+5V的电源。下载模块提供JTAG和AS两种下载模式,JTAG模式通常用于程序代码的测试和验证部分,AS模式则适用于程序代码的应用环节。输入按键是控制设备必不可少的部分,在核心板上提供了四位独立按键,在功能扩展板上提供了八位矩阵按键,为满足教学和创新实践应用提供了有力保证。
(2)输出模块。输出模块主要集中在功能扩展板上,集合目前教学任务的该功能扩展板包含了七段数码管、路口红绿灯模块、蜂鸣器和LED指示灯等。根据不同的教学任务将原理图或代码和实验平台相结合,系统就可以根据不同的实验操作指令向相应设备传送信号,并显示不同的实验结果。同时可以根据不同要求更换和升级功能扩展板,达到充分利用资源的效果。
(3)核心模块FPGA芯片。选用Altera EP1C6T144C8作为核心单元,实验平台的集成开发环境为QuartusⅡ,其中设计输入主要有原理图输入和HDL输入两种方式。学生已经学习了数字电子技术的相关课程,对各种基本的数字电路单元有了比较深入的了解和认识,在进行实验的过程中主要是通过原理图输入,经过仿真和综合后配置到FPGA芯片中,然后在实验平台上直接观察实验结果。教学流程如图2所示。
使用原理图输入的方式适合刚学完数字电子技术的学生,该方式非常直观、形象。同时鼓励学生学习Verilog HDL或VHDL,基于可移植性和规范化方面的考虑,绝大部分FPGA设计和ASIC设计最终都将统一到HDL(硬件描述语言)平台上,为以后进入FPGA的开发领域打好基础。
2.实验平台的特点
设计开发板体积小,便于携带。学生可借出在宿舍或在开放实验室完成设计,设计灵活方便,学生可随意安排自己的时间。QuartusⅡ软件中,提供的元件基本满足设计的需求,减少了购买元件的成本。真实性强,学生在仿真设计过程中,可直接看到设计与实际是否相符,对出现的错误可随时修改。将设计—仿真—实现连成一体,提高了学生的学习热情。
三、数字电路课程设计实验平台在课程设计中的实施
1.优化设计内容
新的数字电路课程设计实验平台设计好后,对课程设计的实验内容做了调整。
首先在选题时扩大了范围,其次适当增加了难度。对于较复杂的设计电路,都可通过软硬件结合的实验平台实现。允许两人一组,鼓励一人一组。让学生在做课题时重在设计。学生根据自己的知识水平采取不同的设计方法实现,选出最佳方案。把设计好的电路下载到试验平台上就可直接看出设计成功与否。
2.注重实验过程
(1)理论指导,布置设计。在理论教学阶段,让学生掌握数字电路系统的一般设计方法。对于复杂的数字电路系统,由整体到局部进行组合,再由局部到整体进行设计,要求学生学会模块化的设计方法;然后布置设计任务及题目要实现的具体功能。 (2)学生查阅资料。学生根据题目要求,到图书管、网络、资料室了解相关技术应用,参考相关方案,根据自己的能力选定题目、制定设计方案。在这个阶段,教师只是起引导作用,要求学生对设计的课题要充分理解并掌握其原理,这样才能为后续的仿真设计、电路板调试打下良好的理论基础。
(3)系统仿真设计及软硬件系统调试。在数字电路课程设计中引入EDA仿真软件教学,把EDA技术应用于数字电路课程设计,让多数学生能在短时间内掌握其使用方法,并运用自如。
学生们在校期间如能熟练掌握EDA技术,对提高自己的工程应用能力,适应社会需求,找到合适自己发展的工作非常有利。
(4)撰写实验报告。撰写课程设计报告。课程设计报告是一份严谨的科研报告,要求学生提交设计方案、设计过程、元器件的选择、逻辑算法、调试方案、调试中处理问题与解决问题的方式,以及实验结果、数据分析、报告总结等。[5]严格的要求对培养学生实事求是的工作作风有积极的促进作用,为今后撰写毕业设计打下了坚实的基础。
3.完善的考核制度
合理给出成绩是培养学生工程应用能力的动力。[6]它不仅反映了学生的真实水平,还能激发学生的学习热情和创造欲望。
考核方式采用小组答辩的形式,同样题型的学生组成同一小组,在小组会上学生介绍自己的设计方案、实现方式,并当场演示实验结果。教师和其他学生对其设计进行提问和讨论,并在同一题型中选出最佳方案,每组最佳方案在全班总结会上展示,让学生了解自己的不足,取长补短。
实践教学表明,学生们通过数字电路课程设计这门和实践紧密联系的课程的训练,工程应用能力得到了大大提高。
四、结束语
目前电子行业人才竞争激烈,不但要求学生理论基础扎实,而且要有较强的自学能力及实践动手能力。通过使用新的实验平台,学生们了解、接触了电子行业最新的技术方法及制作过程,开阔了设计思路,扩展了学生实验设计的范围。数字电路课程设计的训练为后续课程中更为复杂的电路设计、电子制作打下了良好基础,每年都有不少大三、大四的学生,在全国、全区的大学生电子设计竞赛中获奖,这些成就都得益于数字电路课程设计的训练。
参考文献:
[1]周建国,王小兰.虚拟实验系统在“数字逻辑”实验教学中的应用[J].实验室研究与探索,2011,(10):78-80.
[2]高辉.多功能综合性实验方法研究[J].计算机教育,2010,(2):154-140.
[3]刘英,李佳,徐兆君,等.工程素质与创新精神的培养与实践[J].化工高等教育,2011,(2):25-27.
[4]温显斌,王法玉.构筑实践教学体系,强化应用能力培养[J].计算机教育,2010,(10):126-128.
[5]李小珉,叶晓慧.深化《数字电路与逻辑设计》课程改革[J].长江大学学报,2004,1(4):124-125.
[6]李祖明,胡仁杰.综合设计类课程建设的思考与实践[J].实验室研究与探索,2008,(12):109-111.