Human motion segmentation based on structure constraint matrix factorization

来源 :Science China(Information Sciences) | 被引量 : 0次 | 上传用户:jtls
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Dear editor,The human motion recognition based on the segmented datasets is a hot multidisciplinary research topic in the field of computer vision. However, in reality, the collected data is without segmented. Therefore, the motion segmentation is cruc
其他文献
针对工厂生产线上的商品包装外箱文本印刷存在残缺,无法及时检出影响流通销售的问题,本文制作了工业商品外观信息数据集,提出了基于深度学习的工业视觉箱体字符识别与判断方法。通过对YOLOv3进行合并卷积层与批量归一化层,引入GIoU作为边界框损失函数,设计自适应调整定位坐标方法,优化了在原始图像上进行文本检测定位的速度与精度;训练并对比了CRNN和Tesseract两种识别引擎在裁剪后文本图片上的识别性
期刊
在图像拼接篡改检测任务中,由于篡改区域的尺度多样性以及模糊操作的干扰,传统的分类网络难以提取图像的篡改特征。为了有效解决这一问题,提出了基于DeepLab v3+的多任务图像拼接篡改检测算法。首先,使用浅层图像特征来预测图像的篡改区域边界,提高了模型对于篡改边界的敏感性。其次,在空洞空间金字塔模块中融合空间和通道注意力机制,加强了模型对于多尺度篡改区域的适应性。最后使用多尺度的融合特征进行图像的篡
期刊
偏头痛是一种严重危害人类健康的脑疾病,其中无先兆偏头痛在临床中占比最多且诊断困难。当前无先兆偏头痛辅助诊断算法研究中,基于机器学习的脑影像功能连接分析方法是最主要研究方向。因此类方法多依赖于预定义的脑图谱模板,受模板选择主观因素及分类器性能影响,现有方法的智能化程度和准确率较低,难以满足临床及研究需求。基于设计的新型3D-CNN技术,提出了一种无先兆偏头痛智能辅助诊断算法—MwoA3D-Net(3
期刊
针对现有基于深度学习的通用目标检测方法对机场场面环境目标尺度差别大,特别是小目标难以检测到的问题,提出了一个基于SSD算法并结合特征金字塔融合网络的多尺度目标检测算法。该算法首先采用了更深的ResNet-50作为骨干网络,并单独设计了六层额外特征层。其次,使用特征金字塔网络进行特征融合,以获得更鲁棒的语义信息。最后使用Soft-NMS以解决存在的漏检情况,调整先验框的尺度比以更好的检测小目标。通过
期刊
针对医学图像分辨率小、边缘模糊、感兴趣区域(ROI)区域不明显造成的分割不准确性问题,提出了一种新型Mobile-Unet网络的肺结节图像分割方法。该方法首先使用Mobilenet中bneck模块替换Unet网络的下采样部分,并对输入图像进行特征提取;然后,将下采样提取的特征按照Unet网络连接方式融合到上采样部分;最后,利用训练好的网络得到分割结果。实验利用采集的肺结节数据集对Mobile-Un
期刊
提高SLAM(Simultaneous Localization And Mapping)算法的精度和鲁棒性是解决室外移动机器人自主定位问题的关键。针对单目相机在室外复杂环境下易受到遮挡、相机移动过快、图像模糊以及机器人纯旋转下算法精度和鲁棒性下降、低精度IMU(Inertial Measurement Unit)的累积偏移等问题,提出了一种多目相机与IMU融合的方案——MCSI-VINS(Mul
期刊
生成对抗网络在图像生成方面具有广泛应用。但基于无监督方式与有监督方式的网络生成样本仍有较大差距。为解决生成对抗网络在无监督环境中生成样本多样性差、质量较低以及模型训练时间过长等问题,提出了具有选择性集成学习思想的生成对抗网络模型。具体地将生成对抗网络中的判别网络采用集成判别系统的形式,有效的减少了由单判别器判别性能不佳导致判别误差的情况;同时考虑到若集成判别网络均采用统一网络设置,则在模型训练中基
期刊
针对眼底视网膜血管分割中血管边界难以精确识别以及血管与背景对比度低而难以分割的问题,提出一种编码器-解码器结构的算法。为了提高算法在血管边界的分割能力,在编码部分采用全局卷积网络和边界细化替换传统的卷积层;在跳跃连接部分引入改进的位置注意模块和通道注意模块,目的是增加血管与背景之间的对比度,使网络更好的将血管与背景分割开;此外,为了提高网络的性能,在编码部分的最后一层使用密集卷积网络解决网络过拟合
期刊
目前视频目标分割算法多是基于匹配和传播策略分割目标,常常以掩模或者光流的方式利用前一帧的信息, 该文探索了新的帧间特征传播方式,利用短时匹配模块提取前一帧信息并传播给当前帧,提出一种面向视频序列数据的目标分割模型. 通过长时匹配模块和短时匹配模块分别与第一帧和前一帧做相关操作进行像素级匹配,得到的全局相似性图和局部相似性图,以及前一帧的掩模和当前帧的特征图,经过两个优化网络后通过分割网络得到分割结
期刊
RGB-D图像显著性检测旨在提取三维图像中的显著目标。为解决当前显著性检测算法难以检测出光线干扰场景内的目标和低对比度的目标等问题,提出了基于跳层卷积神经网络的RGB-D图像显著性检测方法。利用VGG网络分离出RGB图像和深度图像的浅层与深层特征,而后进行特征提取;以跳层结构为基础连接提取到的特征,实现融合深度、颜色、高级语义和细节信息的目标,同时生成侧输出;最后,将侧输出进行融合,得到最佳的显著
期刊