论文部分内容阅读
针对现有的支持向量机(SVM)不具有多分辨率学习的特点,提出一种新的小波框架的多尺度支持向量机(SVM)的模糊小波网络(FWN)算法.将小波多尺度学习和模糊推理方法相结合,由于FWN对应着多个模糊规则,而每个模糊规则的后件对应一个小波网络,解决了模糊规则后件难以描述的问题;对高维输入的小波网络的初始参数和网络结构的确定困难问题,用基于正交小波框架的支持向量机代替小波网络的方法,使FWN模型具有更好的泛化性能;为了提高FWN模型的逼近精度,使用梯度下降方法调节FWN参数.仿真结果表明,与传统的模糊神经网络(