论文部分内容阅读
基于集成学习提出了一种新的模糊分类规则的产生算法。将分类规则的前件、后件模糊化,在自适应提升(Adaptive Boosting,AdaBoost)算法的迭代中,调整训练实例的分布,利用遗传算法产生模糊分类规则。并在规则学习的适应度函数中引入训练实例的分布,使得模糊分类规则在产生阶段就考虑相互之间的协作,产生具有互补性的分类规则集。从而改善了模糊分类规则的整体识别能力,提高了分类识别精度。