论文部分内容阅读
无论是对人脸检测还是人脸识别来说,训练或测试一个分类器都要进行数据的收集,目前所有基于统计学习的方法都存在这个问题.提出了一种针对已有的人脸样本通过采用遗传算法进行重采样来扩张样本的算法.其基本思想是,基于人脸样本由有限的部件构成,而且遗传算法可以用于模拟自然界中的遗传过程.这种模拟可以涵盖人脸的一些变化,比如不同的光照、姿态、饰物、图片质量等.为了证明该算法所生成样本的推广能力,将这些生成的样本用于训练一个基于AdaBoost的人脸检测器,并且将它在MIT+CMU的正面人脸测试库上进行了测试.实验