论文部分内容阅读
针对粒子滤波中得到优化的重要性密度函数比较困难的问题,将迭代扩展卡尔曼滤波和序贯融合与粒子滤波相结合,应于雷达和红外多传感器目标融合跟踪。利用基于迭代扩展卡尔曼滤波的序贯融合算法得到的系统状态更新矩阵和误差协方差矩阵来构造粒子滤波的重要性密度函数,使重要性密度函数能够融入最新观测信息的同时,更加符合真实状态的后验概率分布。仿真结果表明基于序贯融合的迭代扩展卡尔曼粒子滤波(IEK-PF)能提高状态估计的精度。