论文部分内容阅读
图像分割是图像处理到图像分析的最关键步骤.首先,研究C均值的聚类算法并阐述与其相关的概念,分析该聚类方法的基本原理和聚类准则.然后,针对该算法的优缺点以及存在的不足之处,对C均值聚类算法进行改进,将Relieft技术引进,由于图像分割时涉及众多特征,改进算法的核心就在于特征提取时进行加权处理,最终设计出有效的、鲁棒性好的彩色图像分割的流程.最后,通过大量的实验,将改进前后的C均值图像分割算法的分割结果进行比较,改进后的聚类算法能够实现更加优秀的图像分割结果;通过将实验对象置于不同的环境下的实验数据的