论文部分内容阅读
解一元二次方程及判断一元二次方程是否有解,是一元二次方程一章的两个重点,除要掌握基本方法外,适当的掌握一些常见的技巧可以提高学习的效率。一、解法选择技巧解一元二次方程的基本方法有:直接开平方法、配方法、因式分解法、公式法,如何快速选择方法,有一定的技巧.对于一元二次方程一般式ax~2+bx+c=0(a≠0,a、b、c是常数),其中a≠0,但b、c可以为0,因此方程ax~2=0,ax~2+bx=0,ax~2+c=0,这些形式的方程因为缺项,也叫不完全的一元二次方程,是一元二次方程的特殊形式,因此解法也就会有不同的技巧.对于一元二次方程ax~2+bx+c=0中的常数项c=
Solving a quadratic equation and judging whether a quadratic equation has a solution are the two focuses of the one-member quadratic equation. In addition to mastering basic methods, proper mastery of some common techniques can improve the efficiency of learning. First, the solution to choose techniques to solve the one-dimensional quadratic equation basic methods are: direct Kaiping method, matching method, factorization method, formula method, how to quickly select methods, there is a certain skill. For one yuan quadratic equation general formula ax~2 +bx+c=0 (a≠0, a, b, and c are constants), where a≠0, but b and c can be 0, so the equation ax~2=0, ax~2+bx=0,ax ~2+c=0, these forms of equations are also called incomplete quadratic equations because they are missing items. They are special forms of quadratic equations, so the solution will also have different skills. For the unary quadratic equation ax Constant term in ~2+bx+c=0 c=