论文部分内容阅读
近年来的蛋白质组学研究为深入认识菠菜(Spinacia oleracea L.)生长发育与逆境应答的分子机制提供了重要信息。通过整合分析菠菜蛋白质组学研究结果,揭示菠菜叶片(细胞器)发育以及缺铁、镉、盐和硫化氢胁迫应答的调节机制,包括:(1)黑暗条件下叶绿体RNA的降解受到非Mg Cl_2依赖的和Mg Cl_2依赖的核酸内切酶的调控;(2)含有SWI/SNF complex B(SWIB)结构域的质体拟核相关蛋白质(pt NAP)、Myb转录因子SANT超级家族蛋白质、茉莉酸和乙烯响应因子3、β链蛋白和Rec F/Rec N/SMC蛋白等,参与叶绿体拟核的形态建成调控;(3)硫氧还蛋白通过影响叶绿体和线粒体内蛋白质的氧化还原状态调节其功能;(4)过氧化物酶参与抗氧化系统、光呼吸C2循环、脂肪酸β氧化、乙醛酸循环、茉莉酸和叶绿醌合成等;(5)光系统Ⅰ蛋白质对缺铁高度敏感,而光系统Ⅱ天线单体—三聚体的聚合与解聚可以动态变化,从而适应缺铁胁迫;(6)基部叶片积极响应镉胁迫,通过植物螯合肽的积累抑制镉离子进入顶部叶片,而顶部叶片通过光合和产能增加供应植株能量需求;(7)叶片通过加强光合作用与能量代谢,以及诱导乙烯与茉莉酸生物合成等过程应答硫化氢胁迫。
In recent years, proteomics research has provided important information for understanding the molecular mechanism of growth and development and response to stress in spinach (Spinacia oleracea L.). Through the integrated analysis of the results of spinach proteomics, the regulatory mechanism of spinach leaf (organelle) development and iron, cadmium, salt and hydrogen sulfide stress responses were revealed, including: (1) Chloroplast RNA degradation under dark conditions was influenced by non-MgCl_2 (2) pT NAP containing the SWI / SNF complex B (SWIB) domain, the MyB transcription factor SANT superfamily protein, jasmonic acid and (3) Thioredoxin regulates its function by affecting the redox state of proteins in chloroplast and mitochondria; (3) Thioredoxin regulates its function by affecting the redox state of chloroplast and mitochondrial proteins; (4) Peroxidase participates in antioxidant system, photorespiration C2 cycle, fatty acid beta oxidation, glyoxylate cycle, jasmonic acid and phylloquinone synthesis, etc .; (5) Photosystem I protein is highly sensitive to iron deficiency, while light The aggregation and depolymerization of monomer-trimer system II could be dynamically changed to adapt to the iron deficiency stress. (6) The basal leaves positively responded to cadmium stress, and inhibited the cadmium ions from entering the top leaves through the accumulation of plant chelating peptides. leaf Plant photosynthetic energy demand and supply through the production capacity; (7) by enhancing photosynthesis and leaf energy metabolism, and induction of ethylene and jasmonic acid biosynthesis process hydrogen sulfide stress response.