论文部分内容阅读
一、约数和倍数 1.整除整数a除以自然数b,如果能够得到整数q,这时,就叫做b能整除a(或者a能被b整除)、记作b|a(或者a|b)。如果b不能整除a,记作b(?)a。小学数学教材在讲整除概念之前就提出:“在讲数的整除时,我们说的数,一般只指自然数,不包括0。”然后提出:“数a除以数b,除得的商正好是整数而没有余数,我们就说,a能被b整除。”按照这个定义,我们就不能判断0能不能被2、3等数整除,而按照前一定义,就能作出肯定的判断。
First, the divisor and multiples 1. Divide the integer a divided by the natural number b, if we can get the integer q, then called b can be divisible by a (or a divisible by b), denoted b | a (or a | b ). If b can not be divisible a, denoted as b (?) A. Primary mathematics textbook before the concept of divisibility put forward: “In divisibility divisibility, we say the number, generally refers to the natural number, excluding 0.” Then said: “divided by the number of the number of b, divided by the business just Is an integer and there is no remainder, we say that a can be divisible by b. ”According to this definition, we can not judge whether 0 can be divisible by 2, 3 and so on, and according to the previous definition, we can make a positive judgment.