挤压复合铸造7075/6061双金属铸锭的界面组织与性能

来源 :金属热处理 | 被引量 : 0次 | 上传用户:jtyz888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用挤压复合铸造工艺制备出具有“半固态组织/枝晶组织”分布特征的7075/6061包覆型双金属复合铸锭,并对复合铸锭界面处的组织及硬度进行了分析。结果表明,界面结合良好,为冶金结合,无杂质和氧化皮存在。界面处组织过渡平缓,7075铝合金固相颗粒呈一定规律性分布;除Zn元素浓度呈明显梯度变化外,其它合金元素分布较均匀。界面大部分由较细小等轴晶组成,且有大量合金元素沉积在晶界处,致使界面处硬度高于两侧金属,硬度最高达63.3 HRB。
其他文献
通过光学显微镜、场发射电镜和力学性能测试,研究了固溶温度对GH4720Li合金显微组织(晶粒、γ’相)及力学性能的影响。结果表明:随着固溶温度的升高,一次γ’相含量减少,三次γ’相尺寸增大,晶粒长大的趋势也变得明显。当固溶温度超过1120℃后,一次γ’相回溶迅速,晶粒长大迅速,晶粒尺寸分布不均匀性增加。固溶温度与强度呈抛物线性关系,在1130℃强度出现峰值;固溶温度的升高,合金塑性下降,固溶温度超过1100℃时塑性下降得更快。680℃/830 MPa持久拉伸试验表明,随着固溶温度的提高,持久时间增加,当固
采用等温拉伸试验,研究了温度对7075-T6铝合金板材力学性能的影响规律。通过金相观察和断口形貌分析,讨论了7075-T6铝合金板材高温拉伸变形的微观组织变化和断裂失效机制。结果表明,随温度升高,材料强度和硬度逐渐降低,断后伸长率总体上呈上升趋势,但在250℃时出现低值。温度低于200℃,应力随应变先快速增加后缓慢增加,应变硬化占主导作用,主要的软化机制为动态回复;200℃时,应力峰值后保持平稳,应变硬化和回复软化相互平衡;高于200℃,应力随应变快速增加到峰值后逐渐减小,动态再结晶软化占主导作用。250
将DIL805L淬火相变膨胀仪与金相分析手段相结合,绘制了一种高扩孔钢的连续冷却转变曲线。结果表明,冷速在0.5~1℃/s时,室温组织是铁素体+珠光体;冷速超过2℃/s,开始出现贝氏体;冷速超过25℃/s时,铁素体消失;冷速大于40℃/s时,马氏体出现。另外,Si、Mn的配合有助于粒状贝氏体组织的形成,微合金元素Ti与N结合可细化晶粒,间接提高成形性能。
研究了服役45000 h后的燃气轮机叶片不同部位微观组织与持久性能的退化行为。试验结果表明:长时服役后,叶片榫齿部位的微观组织未发生明显的退化损伤,叶片叶尖部位的微观组织则发生明显的退化,其中MC型碳化物发生退化分解,立方状γ′相退化成粗大的球状γ′相。长时服役后,叶片的硬度没有发生明显的变化,而蠕变持久性能明显降低,该燃气轮机叶片在850℃下105 h的外推持久强度降低至66.72 MPa。
利用光学显微镜、扫描电镜和力学试验机研究了3种正火组织的1.25Cr-0.5Mo钢在回火和模拟焊后热处理过程中的组织和力学性能演变。结果表明:1.25Cr-0.5Mo钢粗大的铁素体+珠光体组织经模拟焊后热处理,大量粗大的碳化物沿晶界析出,显著降低钢的冲击性能,铁素体晶内细小弥散碳化物的析出略微改善了钢的强度;贝氏体组织中的贝氏体铁素体板条宽化和碳化物粗化降低了钢的强度,但对冲击性能影响不大;1.25Cr-0.5Mo钢的综合力学性能随着铁素体组织含量的增加而变差,当铁素体组织的含量高于38%时,钢板的力学性
采用热模拟等研究方法,对不同变形工艺条件下的GH4698热变形组织演变机理开展了研究。结果表明:高温低速变形有利于动态再结晶进行,材料发生完全动态再结晶的初始变形温度大于1150 ℃;从工程角度出发,合金初始变形温度推荐1200℃,采用低速变形原则(0.01~0.1s-1),为获得相对均匀的锻造组织,终锻温度应高于1050℃,锻造过程可多火次完成;经GJB 3782标准推荐多级热处理后,晶粒内部存在大量弥散分布的γ纳米析出物,起到良好的析出强化作用。
采用扫描电镜、背散射电子衍射、透射电镜等手段对Hastelloy X(HX)合金的晶界特征分布、拉伸断口形貌及位错分布等进行研究.结果表明,HX合金室温拉伸断口由局部裂纹、微孔和
利用光纤激光器在Ti6Al4V合金基体表面制备了Ni25为基体和Ni包MoS2为润滑剂的Ni基自润滑涂层,通过FESEM、XRD、硬度测试仪和摩擦磨损试验机研究了熔覆层的显微组织、物相组成
采用真空悬浮熔炼法制备出新型Ti-Al-V中熵合金,使用全自动密度天平测定合金密度,并对其分别在500℃和700℃下时效处理2 h,利用光学显微镜、扫描电镜、X射线衍射仪和维氏显微
矿用齿轨在齿柱感应淬火过程中发生齿柱部位开裂情况,从齿轨材料化学成分、感应淬火前原始组织、裂纹宏观、微观组织、感应淬火工艺参数等方面对开裂原因进行了分析,并通过优化加热方式及冷却方式解决了齿轨齿柱感应淬火开裂问题。