论文部分内容阅读
为了提高复杂光照条件下的人脸检测识别率,提出了一种基于Retinex图像增强技术应用于多任务卷积神经网络(multi-task cascaded convolutional networks, MTCNN)的人脸测算法。算法用Retinex理论对图像进行增强,能明显提高MTCNN在不同光照场景下的人脸检测精度,同时使面部五个关键点的定位更准确。实验证明,在复杂光照场景下,该方法比原始MTCNN网络的人脸检测具有更好的效果,有利于后期的人脸对齐及分类任务。