论文部分内容阅读
针对话题追踪静态阈值的缺点和虚假相关报道问题,提出一种基于动态阈值和命名实体双重过滤的话题追踪方法。该方法中,研究了KL距离计算初始阈值,并筛选出候选报道;然后,根据报道时间特点研究了动态阈值方法;最后,抽取追踪话题和测试报道中命名实体,计算命名实体间的相似度以及命名实体相同的个数来选出相关报道,完成话题追踪。通过实验证明该方法的可行性,实验结果表明基于动态阈值和命名实体双重过滤方法能有效地改善话题追踪的性能,并有效降低了话题追踪的误报率和漏报率。