城市轨道交通上盖开发车辆段7号可动心轨辙叉道岔减振降噪性能研究

来源 :铁道勘察 | 被引量 : 0次 | 上传用户:Kfreshman
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
城市轨道交通车辆段物业开发是大中城市开发“新型土地资源”的重大举措,其建设规模不断扩大,由此带来的环境振动噪声问题逐年凸显,车辆段内轮轨振动与摩擦、钢轨接头及道岔有害空间处的轮轨冲击是振动噪声的主要来源.针对此,基于面向振源的上盖开发车辆段无缝化减振降噪技术理念,研发城市轨道交通50 kg/m钢轨7号可动心轨辙叉道岔,并对试验段进行轨道结构和环境振动噪声对比测试和仿真分析.研究表明:①可动心轨道岔消除有害空间,有效降低心轨处轮轨冲击受力,相较于固定型道岔,减振降噪效果明显,随着行车速度的提高,效果进一步增加;②车辆通过道岔直股,速度最大为25 km/h时,地面源强处(距岔线中心线7.5 m)减振3.58 dB,轨旁噪声降低4.63 dB(A),环境噪声(距岔线中心线水平距离7.5 m、距轨顶面3.5 m)降低5.63 dB(A);车辆通过道岔曲股,速度最大为25 km/h时,地面源强处减振3.70 dB,轨旁噪声降低4.75 dB(A),环境噪声降低5.87 dB(A).
其他文献
目前,隔振垫浮置板轨道在城际铁路中已有应用,但对隔振垫刚度值选取缺乏系统性研究,导致其减振效果难以达到预期,针对此,开展隔振垫浮置板轨道合理刚度取值系统研究.通过建立车轨空间耦合模型和轨道-隧道-土体有限元模型,分析时速160~250 km城际铁路隧道段隔振垫浮置板轨道安全性、稳定性及减振效果,最终确定隔振垫刚度合理取值.研究表明,①速度一定时,随着隔振垫刚度增大,钢轨和浮置板垂向动态位移、隧道壁减振效果均随之减小;隔振垫刚度不变时,随着列车运行速度提高,轮重减载率和隧道壁源强振级随之增大.②隔振垫刚度为
交通运输系统是国家建设现代化经济体系的重要支撑.在新基建重大战略部署背景下,交通土木正在经历理论创新和人才培养的创新发展转型期.文章以交通土木领域面临的机遇和挑战为切入点,探讨现代交通土木在规划决策理论、基础设施理论、交通管理与控制理论的创新要求,同时针对人才的需求特性和培养模式开展讨论,提出培养具有洞察能力、探索能力、创新能力、系统能力、协调能力是新型人才的关键.
为深入研究时速80~250 km轨道交通装配式轨道技术,建立装配式轨道精细化分析模型,对轨道结构参数进行分析,综合考虑列车荷载因素、土建因素、曲线段轨道板矢距调整因素和施工因素对轨道结构参数的影响,并对轨道结构进行选型分析及检算.研究表明:(1)轨道板长度、扣件间距对轨道板受力影响较小,轨道板宽度和厚度增大,轨道板受力减小;(2)3个速度级下,轨道板长度为4.7 m,厚度统一为0.2 m,扣件间距统一为0.6 m;第Ⅰ速度级板宽为2.2 m,第Ⅱ、Ⅲ速度级板宽为2.5 m;(3)轨道板采用预应力结构,在板
综述国内外高速铁路和城市轨道交通用可动心轨辙叉道岔的发展概况,以及国内外城市轨道交通对于可动心轨辙叉道岔的需求;阐述可动心轨辙叉关键技术,包括车-岔系统动力学、转换及锁闭、病害伤损、养护维修和更换改造技术等;总结可动心轨辙叉结构设计,分为重载道岔、提速道岔、高速道岔和小号码道岔4部分内容;阐述可动心轨辙叉道岔的制造和铺设内容;对未来可动心轨辙叉道岔的发展提出展望,主要内容包含:时速400 km高速铁路道岔的研制,重载铁路道岔心轨耐磨性及强度优化研究,城市轨道交通7号、9号可动心轨辙叉道岔研制,可动心轨辙叉
为验证国内首组50 kg/m钢轨7号可动心轨道岔的行车安全与稳定性,针对地铁A型车、7号可动心轨道岔,基于多体动力学建立车辆-道岔耦合动力仿真模型,研究地铁车辆的动力响应.研究结果表明:(1)车辆过岔时,在尖轨与可动心轨处各动力学指标均明显增大,脱轨系数、轮重减载率及轮轨横向力最大分别为0.59、0.45和66.23 kN,车体加速度峰值小于0.4 m/s2;(2)车辆侧向过岔时,轮轨横向作用力显著变大,较直向过岔时增大5倍以上;(3)辙叉处无有害空间,车轮由翼轨向可动心轨过渡时不会瞬时脱空.研究成果可为
为探究腐蚀与荷载耦合作用下钢-混凝土组合梁长期变形规律,对钢-混凝土组合梁进行腐蚀与荷载耦合作用225d的长期性能试验,考虑不同加载龄期、栓钉锈蚀率对钢-混凝土组合梁界面相对滑移和长期挠度的影响.研究结果表明:在腐蚀与荷载耦合作用下,栓钉锈蚀率越高,组合梁的界面相对滑移及长期挠度也越大;长期挠度增长与混凝土徐变发展规律类似,与混凝土加载龄期7d的组合梁相比,混凝土加载龄期28d的组合梁长期挠度较小;基于龄期调整的有效模量法和应力重分布原理,考虑组合梁由混凝土收缩徐变和栓钉锈蚀引起的附加挠度,提出栓钉锈蚀条
为综合解决正交异性钢桥面板疲劳开裂和桥面铺装易损两大难题,提出一种由波形顶板、超高性能混凝土(ultra-high-performance concrete,UHPC)结构层和改进螺旋线(modified clothoide,MCL)形组合销所构成的新型波形顶板-UHPC组合桥面结构.设计2类共12个足尺模型,对所提出的新型波形组合桥面板在正、负弯矩作用下的抗弯性能开展试验研究.在此基础上,基于材料本构关系和内力平衡方程,建立新型波形组合桥面板的初始开裂弯矩、名义开裂弯矩和抗弯极限承载力的理论分析方法,通
预应力超高性能混凝土(UHPC)结构具有轻型化、跨度大等优点,为了探明其锚固区的受力性能,以钢纤维长径比、局压面积比与钢纤维掺量为变量,开展了 18个带中心孔道的UHPC棱柱体试件的局压试验,得到了局压承载力以及荷载-位移关系.试验结果表明:UHPC试件局压开裂荷载一般为局压极限荷载的45%~78%,局压破坏之前有较长的裂缝发展过程;局压受力可分为压密、弹性变形、外围混凝土及其与楔形体界面的裂缝发展、破坏四个阶段;钢纤维长径比分别为65与80的两组UHPC试件局压承载力、局压刚度相差均较小;UHPC试件弹
1000kV出线构架是特高压变电站内重要的下部支承结构,为了研究悬挂系统的动力耦合作用对其地震响应和极限承载力的影响,选取输电导线的6种垂跨比和5种档距作为分析工况,采用7组真实远场记录作为地震激励.首先比较各工况在多遇、设防、罕遇和极罕遇地震下的构架地震响应,然后讨论构架的全过程曲线、强震失效模式和极限承载力,最后提出考虑悬挂系统动力耦合作用的构架结构响应和极限承载力的预测模型.研究表明:悬挂系统的动力耦合作用是输电导线的初始水平张力作用、地震激励下的弹性约束作用和耗能减震作用的三者叠加;构架的变形路径
在极端环境中发现原生高产脲酶微生物并开展岩土体的固强研究,是岩土体微生物矿化研究的一个热点和难点.该文在青海柴达木地区的强盐渍土中发现一种新型原生高产脲酶微生物,在强盐环境中,试验该微生物的盐耐受性和矿化性能,开展被加固土体力学强度试验.结果表明:在强盐渍环境下,该新型微生物脲酶活性保持在3.02U~5.03U.在强盐渍粉砂土中进行微生物矿化试验,一周时间内,可以使盐渍粉砂土柱中的碳酸钙含量增加8.11%,碳酸钙主要以球霰石为主;土柱的孔隙率降低6.12%,孔径由4~40μm大孔隙为主,变为以0.4~4μ