论文部分内容阅读
该文提出一种基于多尺度分解的k邻域随机查找快速图像修复方法。基于双边滤波下采样分解图像,从图像最粗糙层开始,对每一粗糙层采用基于最小堆的k邻域随机查找算法快速搜索最佳匹配块,利用鲁棒优先级函数确定下一待修复块。每一粗糙层修复后用双边滤波上采样重建下一粗糙层,迭代得到最终的修复结果。与相关工作比较,所提方法的修复结果能够保持图像的细节和边缘信息,取得更高的修复质量。利用客观指标评价修复结果。实验结果表明该方法有效易行,修复的图像具有良好的可视效果。