论文部分内容阅读
对传动比名义值i_0,本文导出了渐近分数对i_0的差值的精确计算式,并提出了i_0的单向渐近分数的概念。在此基础上,进一步提出了界于i_0±δi_0之间的单向精密极值共轭分数的概念,并探讨了求单向精密极值共轭分数的方法。在这些共轭分数间不断插入分数,就可找出i_0的满足允差要求±δi_0的全部近似分数。对任意精度传动比的挂轮计算,用本文的方法,再利用一个质因数分解表,就可很快算出挂轮。在现有挂轮中计算挂轮的精确解,用本文的分析和方法,可避免不必要的多余计算,加快了计算速度。
For the nominal value i_0 of the transmission ratio, this paper derives the exact formula of the difference between the asymptotic fraction and i_0 and proposes the concept of one-way asymptotic fraction of i_0. On this basis, the concept of one-way precise extremum conjugate fraction bounding to i_0 ± δi_0 is further proposed, and the method to find one-way precise extremum conjugate fraction is discussed. Continuously inserting scores between these conjugate scores can find all the approximate fractions of i_0 that satisfy the tolerance requirement ± δi_0. For any precision gear ratio of the hanging wheel calculation, using this method, and then use a prime factorization table, you can quickly calculate the hanging wheel. In the existing pegged pulley to calculate the exact solution, with the analysis and methods in this paper, to avoid unnecessary redundant calculations, speeding up the calculation speed.