论文部分内容阅读
针对采用支持向量机进行分类的特征子集选择问题,提出一种改进的基于梯度向量的特征评测算法。该算法在核特征空间中,利用数据点到分类超平面的距离函数的梯度向量对各个特征的重要性进行排序,省去了已有算法中计算梯度向量与各个坐标轴夹角的过程,实验结果表明,该算法简化了已有的基于角度的特征选择方法,并且结果保持一致。