论文部分内容阅读
对向传播神经网络(CPN)可以作为矢量量化器用于图像压缩,但CPN学习算法在进行码书设计时存在两个明显的缺陷。本文对CPN学习算法进行改进,提出了一种新的码书设计算法———快速竞争学习及误差修正算法(FCLECA)和一个基于改进CPN的快速矢量量化器模型,并讨论了FCLECA中的重要步骤和重要参数。仿真实验结果表明,FCLECA在生成高质量码书的同时大幅减少了训练时间,可以有效地实现快速矢量量化。