黑土地秸秆覆盖免少耕播种保护性耕作技术

来源 :农机科技推广 | 被引量 : 0次 | 上传用户:Michellesy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一、适宜区域rn主要适用于积温高、风沙大、降水不足、土壤瘠薄的中西部干旱地区;从秸秆还田、保护黑土地和发展绿色生态农业的角度,适用范围基本扩展到全省所有玉米产区.rn二、技术模式rn三、技术特点rn1..关键技术rn(1)秸秆全量原位覆盖保护性耕作技术.秋收时采用配带秸秆粉碎装置玉米联合收获机作业,玉米秸秆直接粉碎全量还田,留茬高度10cm,粉碎长度以10cm秸秆撕裂状为宜,均匀抛撒覆盖地表越冬.收获机未安装粉碎装置或粉碎效果不达标准的需另用秸秆精细粉碎还田机进行二次粉碎作业,秸秆粉碎长度5~10cm.收获、运输等车辆进地作业时不破坏原垄形,第二年春季使用免耕播种机原茬播种.
其他文献
为了提高拖拉机监测系统的自动化和智能化水平,将自适应模糊算法应用到了拖拉机监测系统的设计上,通过自适应遗传算法和模糊PID反馈调节,实现了拖拉机故障和作业质量的智能化监测。为了验证自适应模糊算法在监测系统中的作用,以多拖拉机联合作业为测试对象,在农田作业区域布置了无线传感网络,对远程监测故障诊断结果进行了统计。统计结果表明:自适应模糊算法相比不采用智能算法得到的诊断结果更加准确,对提高监测系统的精度具有重要作用。
针对采摘机器人采摘准确率不高的问题,基于光纤通信技术对采摘机器人进行了设计,并对图像检测传输进行了分析。采摘机器人的主要组成部分为工控机、移动平台、果实识别定位系统、末端执行器系统、能源系统和显示器。采摘机器人采用光纤通信技术对采集的图片数据进行传输,通过对低损耗光纤进行研制,并对光纤传输的可靠性进行研究,以保证图片传输的准确性。为验证采摘机器人的性能,对其进行图片传输和采摘性能进行试验,结果表明:光纤传输系统可以准确的传输图片,采摘机器人的采摘性能良好。
蔬菜是人类生活的必需品,我国的蔬菜产量已超过粮食,成为第一大农产品。蔬菜机械化精量播种是实现蔬菜规模化种植、保证农民节本增效的重要途径之一,也是蔬菜全程机械化的研究重点和难点。为此,分析了我国蔬菜生产概况,重点阐述了蔬菜精量播种装备的研究现状和发展动态。在系统总结和分析我国蔬菜种植特点和发展趋势的基础上,指出现阶段蔬菜精量播种技术难点,并提出了蔬菜小型、高效、高质量播种机械和农机农艺深度融合技术是蔬菜精量播种机的研究重点,旨在为蔬菜精量播种机的进一步研发提供参考。
以农机驾驶机器人为研究对象,以保证机器人的轻量化、结构简单化为目的,设计了一种直驱型农机驾驶机器人,并基于以电磁直驱控制策略设计了机器人直驱电磁执行器。同时,以建立D-H坐标系、运动学和动力学等方面对换挡控制器进行了深入研究,并通过ADAMS软件仿真试验验证了机驾驶机器人换挡控制器结构设计和动力学模型的可靠性。
以拖拉机齿轮箱为研究对象,针对行星齿轮传动系统设计过程中出现的不足,以行星齿轮传动系统最小总体积为设计目标,确定设计目标函数约束条件和设计过程约束条件,建立设计过程
以采摘机器人为研究对象,针对现有采摘机器人采用CCD进行图像识别采集,其数据采集精度和速度均具有一定的局限性的问题,基于友好人机界面构建了采摘机器人的视觉系统。采用激光测距仪作为视觉系统的数据采集装置,综合运用运动控制系统实现激光测距仪的位移变化,选用上位机进行实时数据处理。在视觉系统构建基础上,以果园为目标进行实际检测试验,在视觉系统距离采摘对象不同距离处进行数据采集,绘制出不同距离条件下苹果的
以约翰迪尔904型拖拉机为载体,搭建拖拉机自动导航试验平台,测试分析了电液驱动式和电机驱动式两种转向装置的控制效果。在水泥路面空载、农田地块空载、农田地块旋耕作业3种条件下,电机驱动式自动导航系统的精度比电液驱动式自动导航系统的精度分别高0.169、0.187、0.233cm,电机驱动式自动导航系统的稳定性比电液驱动式自动导航系统的稳定性分别高0.107、0.178、0.099cm。可见,在相同条件下,电机驱动式转向装置在控制精度和工作稳定性方面效果略好。
以农田喷灌系统为研究对象,综合考虑农田土壤温度与土壤湿度,基于区间数学控制算法建立了一种模糊控制喷灌控制系统。以土壤温度和湿度为控制目标,通过农田喷灌来达到目标控制;综合运用土壤温度与土壤湿度的隶属度关系函数曲线,给定不同隶属度条件下的系统控制规则,模拟土壤温度与土壤湿度,进行控制系统的仿真模糊合成计算,确定出喷灌的时长函数,并进行土壤温度和土壤湿度的对比,得出偏差量,形成相关迭代控制过程。系统可实现农业生产过程中土壤湿度的定量控制,促进了土地灌溉的自动化和智能化。
随着自动化技术在农业生产中应用的逐渐推广,农业生产智能化、自动化水平越来越高。农业采摘作业是农业生产中较为重要的环节,为克服传统采摘作业目标识别困难、干扰因素多等问题,深入研究了计算机视觉系统原理,建立了计算机视觉系统数学模型,同时将计算机视觉技术应用到机械采摘系统中,完成了系统硬件系统及软件流程设计。对系统进行了仿真实验,结果表明:基于计算机视觉的果蔬机械采摘系统结构简单,目标识别和定位精度高,
阐述了农业拖拉机机动性、环保性、安全性、舒适性方面的研究现状,从拖拉机动力输出轴(PTO)、牵引性能、液压提升性能、燃油消耗量、废气排放量、翻车保护装置(ROPS)、制动性