论文部分内容阅读
Abstract:Linging cracking is a common quality problem in freeway tunnel.Based on the monitoring on the cracks of the secondary lining and actual geological situations of a freeway tunnel,for where are caused more lots of cracks, taking temporary reinforcement of steel ribs,by indicating the monitoring data of 5 cracks’ movements,arrive at a conclusion with the general trend of increasing first and decreasing later,and any sudden change or monotonic increase in crack width is abnormal and must be caused by external disturbances.Finally the reasons of the induced microcracks are listed after consideration of design parameters given engineering case and construction speed.
Key words:tunneling engineering;cracks;monitoring;cause of formation;analysis
【摘要】衬砌裂缝是公路隧道施工中常见的病害之一。基于某公路隧道二衬砼裂缝监测和隧道实际地质情况,对出现裂缝较多的地段,采用临时钢拱架加固,选取了5处具有代表性的裂缝进行监测,得出先增后减的裂缝运动是一般规律,跳跃性突变及匀速单调发展的裂缝运动不是裂缝正常的运动范畴,必然是施工扰动或其他相关因素导致裂缝运动出现异常所致。结合隧道设计、工程地质施工分析了该隧道二次衬砌压力明显偏大和产生细小裂缝的原因。
【关键词】隧道工程,裂缝,监测,成因,分析
中图分类号:456.3+1 文献标志码:A
引 言
随着近年来经济的发展,我国修建了大量的公路隧道,但随着隧道数量的增加和里程增长,隧道二次衬砌砼(简称二衬砼)出现裂缝已成为常见的质量缺陷[1].
对于III类以下围岩,二次衬砌作为隧道的主要承载结构和最后一道防水防线,在其修建过程中出现一系列问题:由于结构复杂,施工工序较多,在施工过程中存在着结构由不对称向对称转化的过程,加之衬砌混凝土的抗拉性能较差,在施工过程中可能出現裂缝,裂缝的运动可能导致衬砌出现渗漏水,破坏隧道结构的完整性以及影响隧道结构的耐久性等,在极端不利情况下,甚至可能导致结构破坏。本文以某高速公路隧道为工程背景,在二次衬砌裂缝运动监测的基础上,分析裂缝运动的变化规律,对保证隧道工程质量具有一定的实用价值。
1 工程概况
某高速公路沿线地层均为沉积地层,主要为侏罗系(J)、三叠系(T)、第四系(Q)呈零星分布。隧道设计为上、下行分离的整体式双跨四车道隧道,左线设计长度为3 210 m,右线设计长度为3 255 m。隧道进口段位于滑坡群,滑坡体主要由粘土、粘土夹碎石及块石土组成,滑床为基岩风化层顶面,滑坡天然状态下处于稳定状态。隧道洞身从滑坡群中通过,隧道进洞口位于基岩陡坡上,洞身围岩主要为泥灰岩夹泥岩,泥灰岩有溶蚀现象。该段地层埋藏浅,成洞困难。洞口开挖将可能诱发滑坡局部复活或形成新的工程滑坡,影响隧道安全和正常使用。
2 二衬砼裂缝的展布与监测分析
该隧道开挖采用三台阶临时仰拱法,上行线开挖10个月后,发现拱顶及拱腰部位的混凝土上出现大小不等的众多裂缝,现场观测,尤其在右侧拱脚部位具多,并且裂缝仍在发展变化,下行线无此现象。裂缝形状各异,垂直、倾斜、纵向、数条交叉、“x”形或由一组小斜缝组成的大裂缝等都有,多数呈现明显的剪切错断分布如图1所示。针对上述情况,决定加设临时钢架支撑,采用I20 a间距0.5 m的钢拱架,拱架间用Φ5纵向钢筋连结,环向间距1.5 m,临时钢拱架与二衬混凝土间用木楔顶紧。为防止进一步变形,同时加强施工管理,并对开挖过程进行监控量测。根据监测信息反馈分析变形情况,及时调整施工方案。隧道上行线二衬表面选择布设了5个具有代表性的裂缝观测点,典型裂缝处布设传感器,对裂缝宽度发展情况进行监测。环向裂缝处布置传感器编号为1#和2#,纵向裂缝处布置传感器编号为3#、4#和5#。
图1 二衬裂缝形状 图2 临时钢拱架加固
Fig.1 the shapes of secondary lining Fig.2 a temporary reinforcement of steel ribs
近70天裂缝监测数据表明,在隧道不同位置,裂缝变化呈现出不同的变化趋势。采取加强支撑及严格施工规程等措施后,总体来说裂缝变化幅度不大。布设应变计只限于监测裂缝一维的变化发展,监测成果参见图3。图中3#纵向裂缝的一维运动基本上是水平波动,总体跳跃性不大,属于基本稳定的裂缝;2#环向裂缝发展异常,监测数据有大的波动,但其变化趋势单调,呈现增加的趋势,即向一个方向单调发展;4#和5#纵向裂缝开始以平缓变化为主,后期有所上扬。裂缝的一维运动监测成果说明,大部分裂缝运动呈先增后减(如图5中1#后段、2#后段、3#后段)规律,这和裂缝部位结构受力不利,致使裂缝张开,经过后期应力调整,通过应力的传递、塑性区的发展以及结构、围岩材料的蠕变和应力松弛等,使集中和不利的应力得以局部释放,进而使裂缝的宽度有所减小有关[3-4]。可以说,裂缝运动的过程,也是隧道结构受力后应力调整和变化的过程。
表1 裂缝观测点位置及特征
Table 1 The locations and Characteristics of cracks
3 二衬砼裂缝的成因
裂缝产生的原因,客观上是由于存在着不可预见性的地质影响因素而产生了裂缝;主观上是由于设计和施工原因造成的。前期通过对隧道埋深土体测斜孔的监测,说明隧道开挖对山体的影响相当大,山体有向隧道蠕滑变形,尤其是在开挖面到达测斜孔附近时,影响十分的明显。二衬脱模后,砼硬化在一定程度上能抑制山体的向下蠕动,同时二衬会出现变形,但是当超过一定承受荷载能力的时候,导致二衬砼开裂。
4 结 论
1)近70天监测数据分析来看,先增后减的裂缝运动是一般规律,跳跃性突变及匀速单调发展的裂缝运动不是裂缝正常的运动范畴,必然是施工扰动或其他相关因素导致裂缝运动出现异常所致,通过二衬砼裂缝运动的监测规律,可以了解隧道健康的安全状况,进而指导隧道施工与防灾。
2)对混凝土裂缝及其采取临时加固措施来看,要了解裂缝发生的机理,通过事前预防来减少隧道衬砌混凝土
的裂缝发生,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,同时施工人员要认真负责,严格按规定要求施工,严把质量关,方能保证隧道安全、稳定的工作。
参考文献:
[1] 王梦恕.21世纪山岭隧道修建的趋势[C].四川省公路学会隧道专业委员会论文集,1998.
[2] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2002.
[3] 王建秀,朱合华,唐益群,等.连拱隧道裂缝运动的监测与分析[J].土木工程学报,2007,40(5):69-73.
[4] 王建秀,朱合华,唐益群.双连拱公路隧道裂缝监测分析[J].岩石力学与工程学报,2005,24(2):195-202.
[5] 李德武.隧道[M].北京:中国铁道出版社,2004.
Key words:tunneling engineering;cracks;monitoring;cause of formation;analysis
【摘要】衬砌裂缝是公路隧道施工中常见的病害之一。基于某公路隧道二衬砼裂缝监测和隧道实际地质情况,对出现裂缝较多的地段,采用临时钢拱架加固,选取了5处具有代表性的裂缝进行监测,得出先增后减的裂缝运动是一般规律,跳跃性突变及匀速单调发展的裂缝运动不是裂缝正常的运动范畴,必然是施工扰动或其他相关因素导致裂缝运动出现异常所致。结合隧道设计、工程地质施工分析了该隧道二次衬砌压力明显偏大和产生细小裂缝的原因。
【关键词】隧道工程,裂缝,监测,成因,分析
中图分类号:456.3+1 文献标志码:A
引 言
随着近年来经济的发展,我国修建了大量的公路隧道,但随着隧道数量的增加和里程增长,隧道二次衬砌砼(简称二衬砼)出现裂缝已成为常见的质量缺陷[1].
对于III类以下围岩,二次衬砌作为隧道的主要承载结构和最后一道防水防线,在其修建过程中出现一系列问题:由于结构复杂,施工工序较多,在施工过程中存在着结构由不对称向对称转化的过程,加之衬砌混凝土的抗拉性能较差,在施工过程中可能出現裂缝,裂缝的运动可能导致衬砌出现渗漏水,破坏隧道结构的完整性以及影响隧道结构的耐久性等,在极端不利情况下,甚至可能导致结构破坏。本文以某高速公路隧道为工程背景,在二次衬砌裂缝运动监测的基础上,分析裂缝运动的变化规律,对保证隧道工程质量具有一定的实用价值。
1 工程概况
某高速公路沿线地层均为沉积地层,主要为侏罗系(J)、三叠系(T)、第四系(Q)呈零星分布。隧道设计为上、下行分离的整体式双跨四车道隧道,左线设计长度为3 210 m,右线设计长度为3 255 m。隧道进口段位于滑坡群,滑坡体主要由粘土、粘土夹碎石及块石土组成,滑床为基岩风化层顶面,滑坡天然状态下处于稳定状态。隧道洞身从滑坡群中通过,隧道进洞口位于基岩陡坡上,洞身围岩主要为泥灰岩夹泥岩,泥灰岩有溶蚀现象。该段地层埋藏浅,成洞困难。洞口开挖将可能诱发滑坡局部复活或形成新的工程滑坡,影响隧道安全和正常使用。
2 二衬砼裂缝的展布与监测分析
该隧道开挖采用三台阶临时仰拱法,上行线开挖10个月后,发现拱顶及拱腰部位的混凝土上出现大小不等的众多裂缝,现场观测,尤其在右侧拱脚部位具多,并且裂缝仍在发展变化,下行线无此现象。裂缝形状各异,垂直、倾斜、纵向、数条交叉、“x”形或由一组小斜缝组成的大裂缝等都有,多数呈现明显的剪切错断分布如图1所示。针对上述情况,决定加设临时钢架支撑,采用I20 a间距0.5 m的钢拱架,拱架间用Φ5纵向钢筋连结,环向间距1.5 m,临时钢拱架与二衬混凝土间用木楔顶紧。为防止进一步变形,同时加强施工管理,并对开挖过程进行监控量测。根据监测信息反馈分析变形情况,及时调整施工方案。隧道上行线二衬表面选择布设了5个具有代表性的裂缝观测点,典型裂缝处布设传感器,对裂缝宽度发展情况进行监测。环向裂缝处布置传感器编号为1#和2#,纵向裂缝处布置传感器编号为3#、4#和5#。
图1 二衬裂缝形状 图2 临时钢拱架加固
Fig.1 the shapes of secondary lining Fig.2 a temporary reinforcement of steel ribs
近70天裂缝监测数据表明,在隧道不同位置,裂缝变化呈现出不同的变化趋势。采取加强支撑及严格施工规程等措施后,总体来说裂缝变化幅度不大。布设应变计只限于监测裂缝一维的变化发展,监测成果参见图3。图中3#纵向裂缝的一维运动基本上是水平波动,总体跳跃性不大,属于基本稳定的裂缝;2#环向裂缝发展异常,监测数据有大的波动,但其变化趋势单调,呈现增加的趋势,即向一个方向单调发展;4#和5#纵向裂缝开始以平缓变化为主,后期有所上扬。裂缝的一维运动监测成果说明,大部分裂缝运动呈先增后减(如图5中1#后段、2#后段、3#后段)规律,这和裂缝部位结构受力不利,致使裂缝张开,经过后期应力调整,通过应力的传递、塑性区的发展以及结构、围岩材料的蠕变和应力松弛等,使集中和不利的应力得以局部释放,进而使裂缝的宽度有所减小有关[3-4]。可以说,裂缝运动的过程,也是隧道结构受力后应力调整和变化的过程。
表1 裂缝观测点位置及特征
Table 1 The locations and Characteristics of cracks
3 二衬砼裂缝的成因
裂缝产生的原因,客观上是由于存在着不可预见性的地质影响因素而产生了裂缝;主观上是由于设计和施工原因造成的。前期通过对隧道埋深土体测斜孔的监测,说明隧道开挖对山体的影响相当大,山体有向隧道蠕滑变形,尤其是在开挖面到达测斜孔附近时,影响十分的明显。二衬脱模后,砼硬化在一定程度上能抑制山体的向下蠕动,同时二衬会出现变形,但是当超过一定承受荷载能力的时候,导致二衬砼开裂。
4 结 论
1)近70天监测数据分析来看,先增后减的裂缝运动是一般规律,跳跃性突变及匀速单调发展的裂缝运动不是裂缝正常的运动范畴,必然是施工扰动或其他相关因素导致裂缝运动出现异常所致,通过二衬砼裂缝运动的监测规律,可以了解隧道健康的安全状况,进而指导隧道施工与防灾。
2)对混凝土裂缝及其采取临时加固措施来看,要了解裂缝发生的机理,通过事前预防来减少隧道衬砌混凝土
的裂缝发生,并在施工中采取各种有效的预防措施来预防裂缝的出现和发展,同时施工人员要认真负责,严格按规定要求施工,严把质量关,方能保证隧道安全、稳定的工作。
参考文献:
[1] 王梦恕.21世纪山岭隧道修建的趋势[C].四川省公路学会隧道专业委员会论文集,1998.
[2] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2002.
[3] 王建秀,朱合华,唐益群,等.连拱隧道裂缝运动的监测与分析[J].土木工程学报,2007,40(5):69-73.
[4] 王建秀,朱合华,唐益群.双连拱公路隧道裂缝监测分析[J].岩石力学与工程学报,2005,24(2):195-202.
[5] 李德武.隧道[M].北京:中国铁道出版社,2004.