论文部分内容阅读
介绍了压缩感知理论的基础知识,并分析了压缩感知的重建算法。正则化正交匹配追踪算法引入了正则化思想进行原子筛选,使迭代次数减少,但前提是要知道信号的稀疏度。稀疏度自适应匹配追踪算法可以通过设置终止条件来使稀疏度自适应,但迭代次数较多,时间成本较大。在两种方法的基础上提出了一种改进的稀疏度自适应变步长正则化匹配追踪算法,该算法克服了上述两种算法的缺点。仿真结果表明,文中提出的算法较准确地重构出原始信号,且运算时间较低。