论文部分内容阅读
为进行呼叫中心的坐席数估计和后续的排班工作,分析了历史话务量数据的特点,总结出影响大型呼叫中心话务量的因素,并用这些影响因素的不同组合来预测话务量,通过结果的对比分析得出相对最优的话务量预测模型。在此模型的基础上分别采用BP神经网络算法和支持向量机算法(LS-SVM)对话务量进行了预测,通过分析和比较结果表明,BP神经网络比支持向量机算法更适合对大型呼叫中心话务量的预测。