论文部分内容阅读
为提高铁路轨道扣件状态检测的效率和准确率,提出基于卷积神经网络的轨道扣件状态检测算法。通过原始图像数据增强、采用修正线性单元、引入弃权技术等优化方法,减小过拟合,提高卷积神经网络的泛化能力。经试验对比,该算法不需要进行特征提取等预处理操作,有效地解决了训练精度和泛化能力差的问题,准确率达到98. 1%,优于传统基于特征提取的图像识别算法。