论文部分内容阅读
针对无线传感器网络(WSN)节点定位方法中采用粗测距技术时,节点间较大的测距误差导致定位准确度不足的问题,提出一种基于特征量重要度最小二乘支持向量回归(LS-SVR)的定位方法.该方法把未知节点到锚节点的距离作为特征量,依据特征量的重要度进行特征提取,通过对探测区域网格化采样得到训练样本集,使用LS-SVR学习得到定位模型;在定位阶段,将未知节点的特征向量输入定位模型,利用LS-SVR良好的泛化能力实现对未知节点的准确定位.对均匀分布和C形区域随机分布的100个节点的定位实验表明,文中提出的定位方法