论文部分内容阅读
The spindle-like, tubular, and tire-like hematite were successively fabricated by a facile, one-step hydrothermal procedure, which is of great importance in facilitating the controllable-synthesis process of commercial industrialization. A mechanism involving a formation-dissolution process was proposed based on the X-ray diffraction, scanning electron microscopy, trans-mission electron microscopy, and high-resolution transmission electron microscopy analysis. It was demonstrated that the presence of phosphate ions during the reaction process is crucial to the morphology evolution of hematite. Their different ad-sorption ability on the different crystallographic planes of hematite and a coordination effect with ferric ions could promote the preferential dissolution of the spindle-like hematite precursors along the long axis [001] from the tips down to the interior, and thus yield the tubular and tire-like hematite one by one with the increasing reaction time. The magnetic measurements have also been performed to investigate the different magnetic properties such as coercivity and low-temperature transition behavior of three different hematite nanostructures.
The spindle-like, tubular, and tire-like hematite were consistently fabricated by a facile, one-step hydrothermal procedure, which is of great importance in facilitating the controllable-synthesis process of commercial industrialization. A mechanism involving a formation-dissolution process was proposed based on the X-ray diffraction, scanning electron microscopy, trans-mission electron microscopy, and high-resolution transmission electron microscopy analysis. It was demonstrated that the presence of phosphate ions during the reaction process is crucial to the morphology evolution of hematite. Their different ad-sorption ability on the different crystallographic planes of hematite and a coordination effect with ferric ions could promote the preferential dissolution of the spindle-like hematite precursors along the long axis [001] from the tips down to the interior, and thus yield the tubular and tire-like hematite one by one with the increasing reaction time. The magnetic measurements have also been performed to investigate the different magnetic properties such as coercivity and low-temperature transition behavior of three different hematite nanostructures.