Electrochemical process of sulfur in carbon materials from electrode thickness to interlayer

来源 :能源化学 | 被引量 : 0次 | 上传用户:wgy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Lots of efforts have been done on different porous carbon materials as cathode for Lithium-sulfur (Li-S) battery.However,seldom researches have been done on the relationship between cathode thickness and electrochemical performance.Our work investigates the relation between electrochemical performance and cathode thickness with typical porous carbon materials.We explain the phenomenon that only a modest cathode thickness can have the most adequate electrochemical reaction trend through the aspect of thermodynamics (chemical potential) so that the best electrochemical performance can be obtained.Besides,interlayer can remit the shuttle effect but hinder the lithium ion diffusion process simultaneously.And we verify the effect of interlayer thickness on the shuttle effect and lithium ion diffusion process.
其他文献
In this work,we report the construction of three-dimensional (3D) CdS nanosphere/graphene networks by a one-step hydrothermal self-assembly route.The 3D graphene networks not only enhance the light scattering,thanks to the interconnected 3D architecture,b
Two novel asymmetric organic small molecules of IT(2FBT-T3Cz)2 and IT(2FBT-TT3Cz)2 with an indenothiophene (IT) central donor core,fluorinated benzothiadiazole (2FBT) as acceptor and 3-carbazole (Cz) unit as terminal group were designed and synthesized as
Various agricultural crop residues including corn stover,corn cob,and sorghum stalk with a moisture content of 75 wt% were subjected to a long pretreatment (12-60h) with supercritical CO2 (scCO2),at low temperature (50-80℃) and a pressure of 17.5-25.0MPa.
A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane (PEM) was developed to electrochemically convert CO2 into organic compounds.Two different Cu-based cathode catalysts (Cu and Cu-C) were prepared by physical vapo
Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reacti
Carbon materials are considered to be one of the most promising anode materials for sodium-ion batteries (SIBs),but the well-ordered graphitic structure limits the intercalation of sodium ions.Besides,the sluggish intercalation kinetics of sodium ions imp
A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated
Subcritical and supercritical water gasification of petroleum coke and asphaltene was performed at variable temperatures (350-650 ℃),feed concentrations (15-30 wt%) and reaction times (15-60 min).Nickel-impregnated activated carbon (Ni/AC) was synthesized
Fiber supercapacitor (FSC) is a promising power source for wearable/stretchable electronics and high capacitive performance of FSCs is highly desirable for practice flexible applications.Here,we report a composite of manganese dioxide (MnO2) and activated
Sodium-ion batteries (SIBs) have emerged as a promising alternative to Lithium-ion batteries (LIBs) for energy storage applications,due to abundant sodium resources,low cost,and similar electrochemical performance.However,the large radius of Na+ and high