船用多级轴流压气机低工况扩稳优化研究

来源 :推进技术 | 被引量 : 0次 | 上传用户:jiahong222
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以船用九级轴流压气机为研究背景,探讨减少可转导叶列数的可行性,并提升低工况喘振裕度,通过数值模拟方法研究通流布局优化对压气机低工况稳定性的影响.通过特性分析和详细流场分析表明:一维关键参数选取对最佳可转导叶控制策略影响较大.优化部分级关键参数,不仅减少了可转导叶列数,而且提升了低转速下的喘振裕度,在75%转速下喘振裕度提升了2.27%,在70%转速下喘振裕度提升了3.3%.
其他文献
为了分析船用增压器涡轮机进、排气系统对涡轮级性能的影响,采用数值模拟方法对全流道大膨胀比跨声速涡轮与进、排气壳耦合计算,探索进、排气壳耦合对涡轮级性能参数的影响,结果表明:进气壳主要影响静叶10%和50%叶高前缘的来流气流角周向分布,静叶排会减弱进气壳带来的参数周向不均匀性,排气壳主要影响动叶尾缘0°与180°周向位置总压与静压分布,进、排气壳耦合涡轮级总静效率比均匀边界涡轮级下降0.25%.
为了揭示上浮过程中的尾流涡结构及其与气泡之间的相互作用,分别采用阴影图像法和层析PIV技术,对单个气泡在静止水中自由Z字型上浮的过程进行了实验研究,得到气泡的形状、运动和三维的尾流速度场.采用λci涡判据和有限时间李雅普诺夫指数(Finite-time Lyapunov exponent,FTLE),从速度场识别出三维的尾流涡结构和二维的拉格朗日拟序结构.结果表明,Z字型上浮过程中,气泡周围环绕有涡环,涡环会沿运动路径脱落交替的、方向相反的发卡涡;单个发卡涡脱落过程中,气泡底部的FTLE脊线会形成一个位置
加速控制计划直接影响了发动机的响应速度以及运行安全.为了提高发动机响应能力,提出了一种基于等温度线的发动机全包线加速控制计划.分别针对稳态和动态过程开展相似换算误差分析,证明并验证了关键参数在等风扇进口温度时,具有较高相似换算精度的规律.基于此换算误差理论,提出全包线加速控制计划改进方法,该方法在不同等风扇进口温度下设计多条加速控制计划,再通过线性插值得到包线内不同等温线下的加速控制计划.结果表明,改进后的加速控制计划相比于传统单点优化得到的加速控制计划,发动机加速至最大转速的98%所需的时间缩短了7.2
学位
学位
直接推力控制可以有效改善推力控制的品质,针对航空发动机直接推力控制问题,进行了模型预测控制(Model Predictive Control,MPC)研究.为了提升航空发动机推力控制的精度,提出了基于复合推进系统动态模型-状态变量模型(Compact Propulsion System Dynamic Model-State Variable Mod?el-State Variable Model,CPSDM-SVM)的航空发动机直接推力预测控制方法.CPSDM实时估计出不可测参数(推力、喘振裕度等)的基
期刊
基于某一典型民机动力装置——PX10涡扇发动机,本文详细介绍了该型号在合格审定过程中针对FAR33部适航规章所要求进行吞鸟、吸冰、振动、超转、叶片包容等各项考核所需进行的试验验证和安全性分析过程.整个适航符合性验证过程涵盖载荷谱分析、强度计算、工况模拟试验等技术手段,各项试验结果均满足对应规章条款的通过准则,表明该型发动机在设计与制造环节具备充足的安全裕度.针对国内商用发动机鲜有适航取证成功案例的现状,本文首次全面阐述了完整的民用航空发动机适航符合性验证过程,为国内发动机厂商产品的适航取证工作提供了借鉴和
本文通过由常温分别降至-40C、-80C、-120℃、-160℃和-190℃及其再回至常温时混凝土受压试验,探讨经历不同超低温混凝土在其超低温时以及再回至常温时受压强度及其离散性变化情况.结果 表明,随作用的超低温降低,混凝土超低温时受压强度总体上呈不断增大趋势,离散性也呈增大态势.经历超低温再回至常温受压强度并未出现恶化情况,相比未经历超低温的常温时受压强度还有所提高,其受压强度变异系数仍呈波动的减小趋势;超低温时及其再回至常温时的各温度区间混凝土受压强度及其变异系数变化率变化较为复杂,但超低温区间的温
为研究改性双基推进剂力学性能的率相关性,开展了不同速率下改性双基推进剂单轴拉伸力学性能试验,并利用扫描电镜对拉伸断面的形貌进行了观察,分析了拉伸速率对推进剂力学性能以及断面形貌的影响,以及不同拉伸速率下的破坏模式.结果表明:随拉伸速率的增加,推进剂应力-应变曲线逐渐出现应变强化现象,且现象越来越明显;推进剂的初始模量、强度随拉伸速率的增大呈现上升趋势;推进剂的断裂伸长率随拉伸速率的增大,呈现先上升后下降的趋势,在0.24%·s-1应变速率附近达到极值;随拉伸速率的增大,推进剂的破坏模式分别表现为颗粒“脱湿