The As-surface of an iron-based superconductor CaKFe4As4

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:txluoyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
As a new type of iron-based superconductor,CaKFe4As4 has recently been demonstrated to be a promising platform for observing Majorana zero modes (MZMs).The surface of CaKFe4As4 plays an important role in realizing the MZM since it hosts superconducting topological surface states.However,due to the complicated crystal structure,the terminal surface of CaKFe4As4 has not been determined yet.Here,by using scanning tunneling microscopy/spectroscopy (STM/S),we find that there are two types of surface structure in CaKFe4As4.Bias-dependent atomic resolution images show an evolvement from √2 × √2 superstructure with respect to the As lattice into 1 × 1 when the tip is brought close to the surface,revealing the sublattice of missing As atoms.Together with the first-principles calculations,we show that the surface As layer has a buckled structure.Our findings provide insight to future surface study of CaKFe4As4 as well as other iron-pnictide superconductors.
其他文献
Graphene quantum dots (GQDs),have unique quantum confinement effects,tunable bandgap and luminescence property,with a wide range of potential applications such as optoelectronic and biomedical areas.However,GQDs usually have a strong tendency toward aggre
The energy crisis has always been a widely concerned problem.It is an urgent need for green and renewable energy technologies to achieve sustainable development,and the photo-assisted charging energy storage devices provide a new way to realize the sustai
Radiotherapy (RT) based on X-ray irradiation is a widely applied cancer treatment strategy in the clinic.However,treating cancer based on RT alone usually results in insufficient radiation energy deposition,which inevitably has serious side effects on hea
Molybdenum disulfide (MoS2) has received enormous attentions in the electrochemical energy storage due to its unique two-dimensional layered structure and relatively high reversible capacity.However,the application of MoS2 in potassium-ion batteries (PIBs
As a famous hole transporting material,nickle oxide (NiOx) has drawn enormous attention due to its low cost and superior stability.However,the relatively low conductivity and high-density surface trap states of NiOx severely limit device performance in so
Metal halide perovskite nanocrystals have attracted great attention of researchers due to their unique optoelectronic properties such as high photoluminescence quantum yield (PLQY),narrow full width at half-maximum (FWHM),long exciton diffusion length and
Graphene is a material with unique properties that can be exploited in electronics,catalysis,energy,and bio-related fields.Although,for maximal utilization of this material,high-quality graphene is required at both the growth process and after transfer of
Fluorescein angiography (FA) is a standard imaging modality for evaluating vascular abnormalities in retina-related diseases,which is recognized as the major cause of vision loss.Long-term and real-time fundus angiography is of great importance in preclin
Electrochemical CO2 reduction reaction (CO2RR) offers a practical solution to current global greenhouse effect by converting excessive CO2 into value-added chemicals or fuels.Noble metal-based nanomaterials have been considered as efficient catalysts for
Owing to their excellent optoelectronic properties,halide perovskite is very promising for photodetectors and other optoelectronic devices.Perovskite heterostructures are considered to be the key components for these devices.However,it is challenging to r