Carbon and nitrogen allocations in corn grown in Central and Northeast China:different responses to

来源 :Journal of Integrative Agriculture | 被引量 : 0次 | 上传用户:forcet
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In order to reveal the impact of various fertilization strategies on carbon(C) and nitrogen(N) accumulation and allocation in corn(Zea mays L.), corn was grown in the fields where continuous fertilization management had been lasted about 18 years at two sites located in Central and Northeast China(Zhengzhou and Gongzhuling), and biomass C and N contents in different organs of corn at harvest were analyzed. The fertilization treatments included non-fertilizer(control), chemical fertilizers of either nitrogen(N), or nitrogen and phosphorus(NP), or phosphorus and potassium(PK), or nitrogen, phosphorus and potassium(NPK), NPK plus manure(NPKM), 150% of the NPKM(1.5NPKM), and NPK plus straw(NPKS). The results showed that accumulated C in aboveground ranged from 2 550–5 630 kg ha–1 in the control treatment to 9 300–9 610 kg ha–1 in the NPKM treatment, of which 57–67% and 43–50% were allocated in the non-grain organs, respectively. Accumulated N in aboveground ranged from 44.8–55.2 kg ha–1 in the control treatment to 211–222 kg ha–1 in the NPKM treatment, of which 35–48% and 33–44% were allocated in the non-grain parts, respectively. C allocated to stem and leaf for the PK treatment was 65 and 49% higher than that for the NPKM treatment at the both sites, respectively, while N allocated to the organs for the PK treatment was 18 and 6% higher than that for the NPKM treatment, respectively. This study demonstrated that responses of C and N allocation in corn to fertilization strategies were different, and C allocation was more sensitive to fertilization treatments than N allocation in the area. In order to reveal the impact of various fertilization strategies on carbon (C) and nitrogen (N) accumulation and allocation in corn (Zea mays L.), corn was grown in the fields where continuous fertilization management had been lasted about 18 years at two sites located in Central and Northeast China (Zhengzhou and Gongzhuling), and biomass C and N contents in different organs of corn at harvest were analyzed. The fertilization treatments include non-fertilizer (control), chemical fertilizers of either nitrogen (N), or nitrogen and phosphorus (NP), or phosphorus and potassium (PK), or nitrogen, phosphorus and potassium (NPK), NPK plus manure (NPKM), 150% of the NPKM (1.5NPKM), and NPK plus straw (NPKS). The results showed that accumulated C in aboveground ranged from 2 550-5 630 kg ha-1 in the control treatment to 9 300-9 610 kg ha-1 in the NPKM treatment, of which 57-67% and 43-50% were allocated in the non-grain organs, respectively. Accumulated N in above ground ranged from 44.8-5 5.2 kg ha-1 in the control treatment to 211-222 kg ha-1 in the NPKM treatment, of which 35-48% and 33-44% were all allocated in the non-grain parts, respectively. C allocated to stem and leaf for the PK treatment was 65 and 49% higher than that for the NPKM treatment at the both sites, respectively, while, N allocated to the organs for the PK treatment was 18 and 6% higher than that for the NPKM treatment, respectively. demonstrated that responses of C and N allocation in corn to fertilization strategies were different, and C allocation was more sensitive to fertilization treatments than N allocation in the area.
其他文献
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
Soil aggregate stability and organic carbon(OC) are regarded as effective indicators of soil structure and quality. A longterm field experiment was established