Nitrogen-doped Zn-Ni oxide for electrochemical reduction of carbon dioxide in sea water

来源 :稀有金属(英文版) | 被引量 : 0次 | 上传用户:qiuzhizhedetiantang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Nitrogen-doped Zn-Ni oxide nanoparticles prepared by ammonia treatment are efficient electrocata-lysts for CO2 reduction to CO.The single-phase nanos-tructures of N-Zn-Ni oxide nanoparticles exhibited high electrocatalytic CO2 reduction activity with CO Faradaic efficiency of 91.5%and partial current density of 3.2 mA·cm-2 at-0.95 V(vs.reversible hydrogen electrode\'RHE)in NaCl aqueous solution.Furthermore\'N-Zn-Ni oxides catalyst achieved CO Faradaic efficiency over 89%at-0.8 V(vs.RHE)in natural seawater\'much better than the CO2 reduction activity of benchmark Ag/C catalysts in seawater\'and demonstrated strong tolerance to several metal ion impurities with retained CO selectivity.The notable reactivity toward CO2 reduction and contamina-tion-tolerance is attributed to peculiar synergistic effect from binary Zn-Ni oxide and nitrogen doping.
其他文献
As a promising photovoltaic technology,per-ovskite solar cells(pero-SCs)have developed rapidly over the past few years and the highest power conversion effi-ciency is beyond 25%.Nowadays,the planar structure is universally popular in pero-SCs due to the s
Perovskite solar cells(PSCs)have been brought into sharp focus in the photovoltaic field due to their excellent performance in recent years.The power conver-sion efficiency(PCE)has reached to be 25.2%in state-of-the-art PSCs due to the outstanding intrins
Germanium(Ge)is considered to be one of the most promising anode materials due to the high theoretical capacity and excellent rate capability.However,its further development is hindered by the poor cycling stability caused by the severe volume change.Here
Artificial photosynthesis is deemed as an effi-cient protocol for transforming abundant solar energy into valuable fuel.In this paper,the well-defined one-dimen-sional(1D)core-shell MnO2@CdS hybrids were con-structed by employing MnO2 nanotubes and CdS na
Water electrolysis has been regarded as a promising technology to produce clean hydrogen fuel with high purity.However,large-scale water electrolysis has been greatly hindered due to the lack of non-noble metal catalysts with high catalytic performance.Be
Silicon materials have attracted wide attention as negative materials due to exceptional gravimetric capacity and abundance.The strategy of using nano-silicon mate-rials as structural units to construct nano/micro-structured silicon-based negative materia
The perovskite solar cells have been intensively investigated these years due to their premium electrical and optical properties as well as huge potential for application.In order to further increase the power conversion efficiency(PCE)of the thin film pe
Molybdenum oxide(MoO3),with superior fea-tures of multi-electrochemical states,high theoretical capacitance,and low cost,is a desirable supercapacitor electrode material but suffers from low conductivity and insufficient active sites.The MoO3 capacitance
In the family of anodes for sodium-ion batteries,alloy-type anodes possess higher theoretical specific capacity than carbon anodes.The theoretical specific capacity of metallic Sn is 847 mAh·g-1.However,the tin-based material undergoes a large volume expa
SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports.But the polycrystalline SnSe possesses much lower performance especially for the low carrier mobility and el