论文部分内容阅读
塑料手机外壳出厂合格检测时,使用传统的人工辨别外观缺陷,费时费力.利用深度学习的卷积神经网络模型训练一个分类器,实现手机外壳外观出现的划痕缺陷自动化检测,可以极大的提高工作效率.实验首先建立基本的卷积神经网络模型,训练模型获得识别基线,再设计修改逐步提高检测准确率.为了解决小数据集训练中的模型过拟合和提高检测精度,综合使用了丢弃层、数据增强技术和批量标准化,减少参数量,并应用迁移学习等方法.实验结果证明,分类器模型能有效提升准确率,在小数据集上达到非常好的划痕缺陷识别效果.