论文部分内容阅读
向量既是代数的对象,又是几何的对象,它是沟通代数、几何的一种工具,有着丰富的实际背景。在高中阶段,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表示和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。一向量法在解析几何中的应用例1,已知A(-1,-1),B(1,3),C(1,5),D(2,7),直线AB与平行于直线CD吗?解:∵AB=[1-(-1),3-(-1)]=(2,4),CD=(2-1,7-5)=(1,2)。又∵2×2-4×1=0,∴AB∥CD。∵AC=[1-(-1),5-(-1)]=(2,6),AB=(2,4),2×4-2×6
Vector is not only an object of algebra, but also a geometric object. It is a tool for communicating algebra and geometry and has rich practical background. In high school, students will understand the vector-rich practical background, understand the meaning of plane vectors and their operations, represent and solve problems in mathematics and physics using vector languages and methods, develop computational skills, and solve practical problems. A vector method in analytic geometry application 1, known A (-1, -1), B (1,3), C (1,5), D (2,7), a straight line AB and parallel to the straight line CD? Solution: ∵AB = [1 - (- 1), 3 - (- 1)] = (2,4), CD = (2-1,7-5) = (1,2). Also ∵ 2 × 2-4 × 1 = 0, ∴AB∥CD. ∵AC = [1 - (- 1), 5 - (- 1)] = (2,6), AB = (2,4), 2 × 4-2 × 6