论文部分内容阅读
影响RBF神经网络性能的关键因素是基函数中心的选取,而目前尚没有可靠的方法选取RBF神经网络的中心。基于GMDH理论的OCA客观聚类具有能够自动确定最优聚类个数的优点。将OCA聚类应用于RBF神经网络中,用以自适应确定隐节点数目和各径向基函数中心,克服了传统RBF网络不能客观确定隐节点数目的缺点。实验仿真结果表明,基于OCA客观聚类的RBF神经网络具有自适应性、正确率高和训练速度快的优点。