论文部分内容阅读
针对传统股票网络社团划分算法发现精度低、时间复杂度高、容易陷入局部最优解的缺点,提出一种基于多基因族(MGF)编码的基因表达式编程(GEP)股票网络社团划分算法,来研究股票市场复杂网络社团化现象。该算法利用多基因族编码的特性,将代表股票节点的ID号和表示社团的类型分别编码在两个不同的多基因族中,再通过一个映射函数将两者的相互作用关系隐式编码在染色体中;同时,将精英迁移策略应用到基因选择、交叉、倒置、限制交换等各个遗传阶段,以避免早熟现象,加快遗传收敛到全局最优解的速度。实验分析表明,该算法能够准确和高效地