论文部分内容阅读
基于多层前向神经网络对任意非线性连续函数有较好的逼近效果,对BP(反向传播算法)神经网络和RBF(径向基函数)神经网络作了理论上的分析比较,并采用实际数据进行训练,说明了RBF神经网络在逼近精度和速度上都要优于BP神经网络。最后,以RBF神经网络作为函数逼近器对射频功率器件建立了大信号特征模型,并进行了模型检验,证明了基于RBF网络的建模方法具有较高的精度。