论文部分内容阅读
若ai∈R,bi∈R+(i=1,2,…,n),由柯西不等式得ni=1a2ibini=1bi≥ni=1aibi·bi2=(ni=1ai)2.所以ni=1a2ibi≥(ni=1ai)2ni=1bi①当且仅当a1b1=a2b2=…=anbn时...
If ai∈R,bi∈R+(i=1,2,...,n), it is obtained by Cauchy inequality that ni=1a2ibini=1bi≥ni=1aibi·bi2=(ni=1ai) 2. So ni=1a2ibi≥(ni=1ai)2ni=1bi1 if and only if a1b1=a2b2=...=anbn...