论文部分内容阅读
问题1:对于圆O_1:x~2+y~2+D_1x+E_1y+F_1=0,圆O_2:x~2+y~2+D_2x+E_2y+F_2=0,两方程相减所得方程是两圆的相交弦所在直线的方程,若两圆相离时,两圆相减所得“伪直线”l_1:(D_1-D_2)x+(E_1-E_2)y+F_1-F_2=0具有什么几何意义呢?问题2:已知双曲线x~2-y~2=1,则以(1/2,1/4)为中点的双曲线的弦所在直线方程不存在,但利用点差法会求出一条“伪直线”l_2:8x-4y-3=0,这条“伪直线”具有什么几何意
Problem 1: For a circle O_1: x ~ 2 + y ~ 2 + D_1x + E_1y + F_1 = 0, the circle O_2: x ~ 2 + y ~ 2 + D_2x + E_2y + F_2 = 0. If the two circles are separated from each other, the equation of the straight line where the intersecting chord of the circle intersects is equal to the geometric value of the “pseudo line” l_1: (D_1 -D_2) x + (E_1 -E_2) y + F_1 -F_2 = 0 What is the significance? Question 2: If the hyperbola x ~ 2-y ~ 2 = 1 is known, then the line equation of the hyperbolic string whose midpoint is (1/2, 1/4) does not exist. Find a “pseudo straight line ” l_2: 8x-4y-3 = 0, this “pseudo straight line ” What is the geometric meaning