论文部分内容阅读
It is pointed out that the finite-size effect is not negligible in locating the critical point of quantum colordynamics(QCD) phase transitions at current relativistic heavy ion collisions. The finite-size scaling form of the critical related observable is suggested. Its fixed point behavior at critical incident energy can be served as a reliable identification of a critical point and nearby boundary of QCD phase transition. How to experimentally find the fixed point behavior is demonstrated by using 3D-Ising model as an example. The validity of the method at finite detector acceptances at RHIC is also discussed.
It is pointed out that the finite-size effect is not negligible in locating the critical point of quantum colordynamics (QCD) phase transitions at current relativistic heavy ion collisions. The finite-size scaling form of the critical related observable is suggested. Its fixed point behavior at critical incident energy can be served as a reliable identification of a critical point and nearby boundary of QCD phase transition. How to experimentally find the fixed point behavior is demonstrated by using 3D-Ising model as an example. The validity of the method at finite detector acceptances at RHIC is also discussed.