Nerve root magnetic stimulation improves locomotor function following spinal cord injury with electr

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:Helilujah
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Following a spinal cord injury,there are usually a number of neural pathways that remain intact in the spinal cord.These residual nerve fibers are important,as they could be used to reconstruct the neural circuits that enable motor function.Our group previously designed a novel magnetic stimulation protocol,targeting the motor cortex and the spinal nerve roots,that led to significant improvements in locomotor function in patients with a chronic incomplete spinal cord injury.Here,we investigated how nerve root magnetic stimulation contributes to improved locomotor function using a rat model of spinal cord injury.Rats underwent surgery to clamp the spinal cord at T10;three days later,the rats were treated with repetitive magnetic stimulation (5 Hz,25 pulses/train,20 pulse trains) targeting the nerve roots at the L5-L6 vertebrae.The treatment was repeated five times a week over a period of three weeks.We found that the nerve root magnetic stimulation improved the locomotor function and enhanced nerve conduction in the injured spinal cord.In addition,the nerve root magnetic stimulation promoted the recovery of synaptic ultrastructure in the sensorimotor cortex.Overall,the results suggest that nerve root magnetic stimulation may be an effective,noninvasive method for mobilizing the residual spinal cord pathways to promote the recovery of locomotor function.
其他文献
The mammalian central nervous system(CNS) is highly complex,with a vast array of processes and interactions occurring in a dynamic and often transient manner.How these processes are combined to regulate our behavior remains poorly understood.This has in t
期刊
Herein,the rationale and supporting evidence for the promise of developing K+/Cl-co-transporter-2 (KCC2) neuromodulatory therapies for spinal cord injury (SCl) is discussed.SCI is commonly a life-changing,unforeseen neurotrauma that has devastating conseq
期刊
Decades of biochemical studies have advanced DNA beyond its primary role as genetic blueprint.DNAzymes are single-stranded enzymatic DNA molecules that do not exist in nature.They are ideal candidates for gene silencing owing to their scalability by solid
期刊
Numerous studies have shown abnormal brain functional connectivity in individuals with Alzheimer\'s disease (AD) or amnestic mild cognitive impairment (aMCl).However,most studies examined traditional resting state functional connections,ignoring the ins
Urolithin A (UA) is a natural metabolite produced from polyphenolics in foods such as pomegranates,berries,and nuts.UA is neuroprotective against Parkinson\'s disease,Alzheimer\'s disease,and cerebral hemorrhage.However,its effect against traumatic br
Diabetes mellitus is an independent risk factor for ischemic stroke.Both diabetes mellitus and stroke are linked to systemic inflammation that aggravates patient outcomes.Stellate ganglion block can effectively regulate the inflammatory response.Therefore
Excessive inflammation post-traumatic spinal cord injury (SCI) induces microglial activation,which leads to prolonged neurological dysfunction.However,the mechanism underlying microglial activation-induced neuroinflammation remains poorly understood.Ruxol
miR-101a-3p is expressed in a variety of organs and tissues and plays a regulatory role in many diseases,but its role in spinal cord ischemia/reperfusion injury remains unclear.In this study,we established a rat model of spinal cord ischemia/reperfusion i
Chronic denervation is one of the key factors that affect nerve regeneration.Chronic axotomy deteriorates the distal nerve stump,causes protein changes,and renders the microenvironment less permissive for regeneration.Some of these factors/proteins have b
Blood-brain barrier (BBB) disruption underlies the vasogenic edema and neuronal cell death induced by acute ischemic stroke.Reducing this disruption has therapeutic potential.Transcranial focused ultrasound stimulation has shown neuromodulatory and neurop