论文部分内容阅读
数据的指数级增长及算法本身的复杂性使深度信念网络(DBN)面临着学习效率问题。根据DBN的样本图像与空间信息无关的特点,建立了DBN图像分类快速训练模型,提出了基于多幅样本图像线性叠加合成思想的DBN图像分类算法—LSMI算法。利用信息熵理论,证明了样本图像与空间信息无关的特点,并以ORL库为依据进行了验证。根据正态历经性,提出了LSMI算法,并以COREL库和MIT库为仿真对象,与其他改进算法进行对比,从正确识别率和算法时间复杂度等指标,判断该算法的有效性。仿真结果表明LSMI算法在保证识别率不变