【摘 要】
:
We prove that a finitely generated soluble group G is nilpotent-by-finite (respectively, finite-by-nilpotent) if every infinite subset of G contains two element
【机 构】
:
Département de Mathématiques, Faculté des Sciences Université Ferhat Abbas, Sétif 19000, Algérie
论文部分内容阅读
We prove that a finitely generated soluble group G is nilpotent-by-finite (respectively, finite-by-nilpotent) if every infinite subset of G contains two elements x,y generating a nilpotent-by-finite (respectively, finite-by-nilpotent)group.Moreover,for a positive integer k,if we suppose is (nipotent of class k)-by-finite (respectively, finite-by-(nilpotent of class k)), then there is an integer c =c(k) such that G is (nilpotent of class c)-by-finite (respectively, finiteby-(nilpotent of class c)).
其他文献
Let B be a ring with 1, p an automorphism of B of order n for some integer n, and B[x; p] the skew polynomial ring in x over B such that 1, x,x2,... ,xn-1 are i
If L/K is a finite Galois extension of the global field K with Galois group G, we denote by A = (L/K, α) the crossed product algebra of G over L,where α is th
Let R be a left and right Noetherian ring and RωR a faithfully balanced selforthogonal bimodule. We introduce the notions of special embeddings and modules of
彩调是广西本土的特色地方戏剧和宝贵的非物质文化遗产。但随着经济发展、生活娱乐方式的改变,它的生存和发展正面临巨大危机,为了挽救彩调艺术,本文探索分析了桂林彩调的生
Let α1,..., αn ∈ N. We prove that, in every infinite ring R, xα11 ... Xαnn= 0 for all x1,...,xn ∈ R ifand only if, for any n infinite subsets X1,...,Xn of
In this paper,we define the notion of dimension filtration of an Artinian module and study a class of Artinian modules,called sequentially co-Cohen-Macaulay mod
The first section of this paper covers preliminaries. Essentially, the next four cover units. It is shown that a compatible nearring with DCCR is Nnilpotent if
In this paper, we study the relation between exchange rings R and their J-semisimple indecomposable factor rings. In particular, we prove that for any exchange
在“中国梦”不断被倡导的今日,人们也越来越多的开始注意中国传统文化与艺术的传承与发展,陶瓷作为一门古老的艺术形式,直至今日也与人们的生活息息相关,从人们日常的日用品
GRAS转录因子作为植物特有的转录因子家族,在植物的生长发育及信号传导途径具有重要作用。但目前在油菜乃至整个芸苔属中对GRAS家族基因的研究还很少。拟南芥LAS基因是GRAS基