论文部分内容阅读
【摘要】本文简要介绍了智能电网的概念及我国智能电网特征,阐述了我国风力发电的现状和存在的主要问题,针对传统电网条件下风电并网困难问题,提出了将风电并入智能微网中、协调配合主网运行来支持风电发展,为促进风电的发展提供一些参考。
【关键词】智能电网;风力发电;新能源利用
一、智能电网概念及主要特征
智能电网(smart grid,SG)是近年来国际上关于未来电网发展态势的一个异常热门的名词和话题。一般意义上,智能电网就是以物理电网为基础,将先进的传感测量技术、信息技术、通信技术等与物理电网高度集成而形成的新型电网,它具有提高能源效率、减小对环境影响、提高供电的安全性和可靠性、减少电网的电能损耗、适应电力市场发展、实现与用户间的互动和为用户提供增值服务等多个优点。
尽管各国针对电力工业应致力于提高电网智能化水平及等级已达成共识,但不同国家的电网企业和组织都在以自己的方式来理解智能电网。我国智能电网主要特征:(1)坚强(Robust):就是要保证整个电力系统的安全可靠性。(2)自愈(Self-Healing):具有自动故障诊断、隔离和系统自我恢复的能力。(3)兼容(Compatible):支持适应分布式发电和微电网的接入。(4)经济(Economical):实现资源的合理配置,降低损耗,提高能源的利用率。(5)集成(Integrated):实现信息高度集成,标准化、规范化和精细化的管理。(6)优化(Optimized):优化资产利用率,降低投资成本和运行维护成本。
二、我国风电发展现状及存在的主要技术难题
我国的风能资源非常丰富,主要分布在“三北”和沿海经济发达地区,这些天然优势奠定了我国风能行业发展的基础。近年来,我国风电发展也远远超出预期,据《中国风电发展报告2010》:截至2009年底,中国风电装机容量达25.8GW,成为风电行业全球领头羊,其装机容量增速超过100%,累计装机容量如今全球排名第二,新增装机容量全球排名第一。尽管我国风电发展取得了有目共睹的成就,但还是存在一系列的技术难题,导致风电并网困难。这些技术难题大致可归纳为三方面:一是电能质量问题。风电系统对电能质量的影响主要是电压波动与闪变及谐波问题。风电的随机波动会导致风速风向变化,影响到整个风机系统运行工况,使得风机输出功率波动大。极端情况下,甚至会造成风机集体从电网解列,给电网造成巨大冲击。二是电网稳定问题。静态稳定方面,无功调节控制能力不足会对电压稳定造成一定影响;动态稳定方面,电网故障期间或故障切除后风场的动态特性会影响电网的暂稳特性。三是电网规划设计缺陷及调度问题。中国的风电场主要位于远离负载中心的电网末端,风能的间歇性势必导致电能供需不平衡,使原有的电网规划设计与之不相适应。而风能的不可控性,导致电网可用调峰容量不足,制约风场出力。
三、智能电网破解风电并网技术难题
1.研究综述。有关智能电网背景下的风力发电已有大量研究,大量资料概述了清洁能源和智能电网技术的发展概况,指出了在清洁电源与大电网并网过程中应用智能电网技术的必要性。并分析探讨了实现大规模风电场有功智能控制的系统设计方案,通过对整个甘肃电网的运行结果验证了方案的有效性,成功实施解决了甘肃大规模风电开发初期的电网运行安全问题。同时研究了把风电以微网形式并入智能电网的策略,结果表明,在风电正常运行和意外切出情况下,可以很好的平抑功率的波动性,为智能电网的安全运行提供保证。指出智能电网相比传统电网而言,其具有的自愈兼容、安全经济、优质互动等特点,使得风电受电网限制的瓶颈将得以打破,但文章并未指出具体操作方法或应用实例。
2.智能电网技术推动风力发电发展。通过对相关文献的研究,智能电网技术的快速发展为风力发电的无缝并网提供了良好的技术保障。应用智能电网技术能够推动风力发电与现有电力系统有机融合,实现“即插即用”的标准和高效的智能化管理、与电网实时互动和协调运行,是我国未来电网的发展方向。而智能电网中的智能微网能有效实现这一目的。微网是一种由负荷和微型电源及储能装置共同组成的系统,它可同时提供电能和热量;微网内部的电源主要是由电力电子装置负责能量转换,并提供必须的控制;微网相对外部大电网表现为单一可控单元,同时满足用户对电能质量和供电可靠性、安全性的要求。此处微网考虑到风力发电的不可控性,对其微网中的测量控制保护等技术需考虑智能电网特性,融入智能电网相关技术。
智能微网提供了一个有效集成应用分布式电源的方式,继承拥有了所有单独分布式电源系统所具有的优点;智能微网作为一个独立的整体模块,不会对主网产生不利影响,不需要对主网的运行策略进行修改;智能微网可以灵活的将分布式电源接入或断开,即分布式电源具有“即插即用”的能力。
综上可知,将风电并入智能微网、协调配合主网运行,可以打破传统条件下风电接入并网的瓶颈,有助于推动风力发电的发展。
风电并网的诸多问题往往是由于响应速度慢、惯性小的特点引起的,而集成多个分布式电源的智能微网增加了系统容量,并有相应的储能系统,使得系统惯性增大,减弱电压波动和电压闪变现象,提高了电能质量。智能微网是新型电力电子技术和分布式发电、可再生能源发电技术和储能技术的综合应用,它所具有的以上一些优点,使得风力发电的接入并网不再大受传统电网制约,具有一定的灵活性和智能性,风力发电接入智能微网如图1所示:
图1风力发电接入智能微网
智能微网在主网发生故障时仍可孤立运行继续保障部分重要负荷供电,增强重要负荷抵御来自主网故障影响的能力,提高系统的供电可靠性。在智能微网中通过具有快速起停和快速负荷调节特性的燃气轮机和燃料电池来补偿风电场出力的波动,使得整个系统的出力在一段时间内稳定的输出,克服仅仅由风电场的出力波动对电网造成的不利影响,解决风电对电网稳定性所引起的技术问题,同时通过调节燃气轮机和燃料电池的输出,使得整个发电系统具有良好的可调度性。这一技术方案在现有的技术条件下,对于风电的大规模开发具有十分重要的意义。
风能资源的特性决定了其最适合分散利用的特点,地球上任何有一定风力的地方,只要环境条件许可都可以建立风力发电站。随着分布式电源技术的进步和成本降低,每个电力用户甚至家庭都可以建立一定规模的分布式发电站,除满足自身的用电需要外,还可以向电网输送多余电量。这样,在电力系统中,将分布着数量众多的微小型终端用户的分布式发电站组成的微网发电系统,在某个局部区域内直接将微网发电系统、电网和终端用户联系在一起,以优化和提高能源利用效率。电力系统能够容纳这些微网发电系统,并能保证整个电力系统的安全可靠运行,是推动利用可再生能源发展的重要途径,也是智能电网发展的目标。
四、展望
积极探究智能电网背景下的风力发电发展,对于实现新能源的大规模开发应用,进而彻底解决我国能源紧缺、环境污染等问题,实现节能减排的具体目标具有重要的意义。本文首先介绍了智能电网的概念及我国智能电网特征,阐述了我国风力发电的现状和存在的主要技术难题,然后针对传统电网条件下风电并网困难的主要问题,通过对相关文献综述研究,提出了将风电并入智能微网中、协调配合主网运行这种方式来支持风力发电的发展,希望能为将来风力发电的发展提供一些参考。由于仅浅要设想了在智能电网相关技术已经完善条件下的风力发电,并未考虑到现实中智能电网技术发展的局限性和相关配套基础设施的不完善,本文涉及到的一些智能微网相关技术方面的细节尚需进一步探讨、研究。
参考文献
[1]郭瑞.智能电网条件下我国风电产业的发展问题综述[J].广东电力.2010,23(3):27~29
[2]栗向鑫,江长明.智能电网综述[J].2009中国电机工程学会年会.2009
[3]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海南:海南出版社,2010
[4]胡学浩.智能电网——未来电网的发展态势[J].电网技术.2009,33(14):1~51
[5]季阳,艾芊,解大.基于智能电网的清洁能源并网技术[J].低压电器.2010(4):2~25
[6]李雪明,行舟,陈振寰等.大型集群风电有功智能控制系统设计[J].电力系统自动化.2010,34(17):59~63
[7]高宗和,滕贤亮,张小白.适应大规模风电接入的互联电网有功调度与控制方案[J].电力系统自动化.2010,34(17):37~41
【关键词】智能电网;风力发电;新能源利用
一、智能电网概念及主要特征
智能电网(smart grid,SG)是近年来国际上关于未来电网发展态势的一个异常热门的名词和话题。一般意义上,智能电网就是以物理电网为基础,将先进的传感测量技术、信息技术、通信技术等与物理电网高度集成而形成的新型电网,它具有提高能源效率、减小对环境影响、提高供电的安全性和可靠性、减少电网的电能损耗、适应电力市场发展、实现与用户间的互动和为用户提供增值服务等多个优点。
尽管各国针对电力工业应致力于提高电网智能化水平及等级已达成共识,但不同国家的电网企业和组织都在以自己的方式来理解智能电网。我国智能电网主要特征:(1)坚强(Robust):就是要保证整个电力系统的安全可靠性。(2)自愈(Self-Healing):具有自动故障诊断、隔离和系统自我恢复的能力。(3)兼容(Compatible):支持适应分布式发电和微电网的接入。(4)经济(Economical):实现资源的合理配置,降低损耗,提高能源的利用率。(5)集成(Integrated):实现信息高度集成,标准化、规范化和精细化的管理。(6)优化(Optimized):优化资产利用率,降低投资成本和运行维护成本。
二、我国风电发展现状及存在的主要技术难题
我国的风能资源非常丰富,主要分布在“三北”和沿海经济发达地区,这些天然优势奠定了我国风能行业发展的基础。近年来,我国风电发展也远远超出预期,据《中国风电发展报告2010》:截至2009年底,中国风电装机容量达25.8GW,成为风电行业全球领头羊,其装机容量增速超过100%,累计装机容量如今全球排名第二,新增装机容量全球排名第一。尽管我国风电发展取得了有目共睹的成就,但还是存在一系列的技术难题,导致风电并网困难。这些技术难题大致可归纳为三方面:一是电能质量问题。风电系统对电能质量的影响主要是电压波动与闪变及谐波问题。风电的随机波动会导致风速风向变化,影响到整个风机系统运行工况,使得风机输出功率波动大。极端情况下,甚至会造成风机集体从电网解列,给电网造成巨大冲击。二是电网稳定问题。静态稳定方面,无功调节控制能力不足会对电压稳定造成一定影响;动态稳定方面,电网故障期间或故障切除后风场的动态特性会影响电网的暂稳特性。三是电网规划设计缺陷及调度问题。中国的风电场主要位于远离负载中心的电网末端,风能的间歇性势必导致电能供需不平衡,使原有的电网规划设计与之不相适应。而风能的不可控性,导致电网可用调峰容量不足,制约风场出力。
三、智能电网破解风电并网技术难题
1.研究综述。有关智能电网背景下的风力发电已有大量研究,大量资料概述了清洁能源和智能电网技术的发展概况,指出了在清洁电源与大电网并网过程中应用智能电网技术的必要性。并分析探讨了实现大规模风电场有功智能控制的系统设计方案,通过对整个甘肃电网的运行结果验证了方案的有效性,成功实施解决了甘肃大规模风电开发初期的电网运行安全问题。同时研究了把风电以微网形式并入智能电网的策略,结果表明,在风电正常运行和意外切出情况下,可以很好的平抑功率的波动性,为智能电网的安全运行提供保证。指出智能电网相比传统电网而言,其具有的自愈兼容、安全经济、优质互动等特点,使得风电受电网限制的瓶颈将得以打破,但文章并未指出具体操作方法或应用实例。
2.智能电网技术推动风力发电发展。通过对相关文献的研究,智能电网技术的快速发展为风力发电的无缝并网提供了良好的技术保障。应用智能电网技术能够推动风力发电与现有电力系统有机融合,实现“即插即用”的标准和高效的智能化管理、与电网实时互动和协调运行,是我国未来电网的发展方向。而智能电网中的智能微网能有效实现这一目的。微网是一种由负荷和微型电源及储能装置共同组成的系统,它可同时提供电能和热量;微网内部的电源主要是由电力电子装置负责能量转换,并提供必须的控制;微网相对外部大电网表现为单一可控单元,同时满足用户对电能质量和供电可靠性、安全性的要求。此处微网考虑到风力发电的不可控性,对其微网中的测量控制保护等技术需考虑智能电网特性,融入智能电网相关技术。
智能微网提供了一个有效集成应用分布式电源的方式,继承拥有了所有单独分布式电源系统所具有的优点;智能微网作为一个独立的整体模块,不会对主网产生不利影响,不需要对主网的运行策略进行修改;智能微网可以灵活的将分布式电源接入或断开,即分布式电源具有“即插即用”的能力。
综上可知,将风电并入智能微网、协调配合主网运行,可以打破传统条件下风电接入并网的瓶颈,有助于推动风力发电的发展。
风电并网的诸多问题往往是由于响应速度慢、惯性小的特点引起的,而集成多个分布式电源的智能微网增加了系统容量,并有相应的储能系统,使得系统惯性增大,减弱电压波动和电压闪变现象,提高了电能质量。智能微网是新型电力电子技术和分布式发电、可再生能源发电技术和储能技术的综合应用,它所具有的以上一些优点,使得风力发电的接入并网不再大受传统电网制约,具有一定的灵活性和智能性,风力发电接入智能微网如图1所示:
图1风力发电接入智能微网
智能微网在主网发生故障时仍可孤立运行继续保障部分重要负荷供电,增强重要负荷抵御来自主网故障影响的能力,提高系统的供电可靠性。在智能微网中通过具有快速起停和快速负荷调节特性的燃气轮机和燃料电池来补偿风电场出力的波动,使得整个系统的出力在一段时间内稳定的输出,克服仅仅由风电场的出力波动对电网造成的不利影响,解决风电对电网稳定性所引起的技术问题,同时通过调节燃气轮机和燃料电池的输出,使得整个发电系统具有良好的可调度性。这一技术方案在现有的技术条件下,对于风电的大规模开发具有十分重要的意义。
风能资源的特性决定了其最适合分散利用的特点,地球上任何有一定风力的地方,只要环境条件许可都可以建立风力发电站。随着分布式电源技术的进步和成本降低,每个电力用户甚至家庭都可以建立一定规模的分布式发电站,除满足自身的用电需要外,还可以向电网输送多余电量。这样,在电力系统中,将分布着数量众多的微小型终端用户的分布式发电站组成的微网发电系统,在某个局部区域内直接将微网发电系统、电网和终端用户联系在一起,以优化和提高能源利用效率。电力系统能够容纳这些微网发电系统,并能保证整个电力系统的安全可靠运行,是推动利用可再生能源发展的重要途径,也是智能电网发展的目标。
四、展望
积极探究智能电网背景下的风力发电发展,对于实现新能源的大规模开发应用,进而彻底解决我国能源紧缺、环境污染等问题,实现节能减排的具体目标具有重要的意义。本文首先介绍了智能电网的概念及我国智能电网特征,阐述了我国风力发电的现状和存在的主要技术难题,然后针对传统电网条件下风电并网困难的主要问题,通过对相关文献综述研究,提出了将风电并入智能微网中、协调配合主网运行这种方式来支持风力发电的发展,希望能为将来风力发电的发展提供一些参考。由于仅浅要设想了在智能电网相关技术已经完善条件下的风力发电,并未考虑到现实中智能电网技术发展的局限性和相关配套基础设施的不完善,本文涉及到的一些智能微网相关技术方面的细节尚需进一步探讨、研究。
参考文献
[1]郭瑞.智能电网条件下我国风电产业的发展问题综述[J].广东电力.2010,23(3):27~29
[2]栗向鑫,江长明.智能电网综述[J].2009中国电机工程学会年会.2009
[3]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海南:海南出版社,2010
[4]胡学浩.智能电网——未来电网的发展态势[J].电网技术.2009,33(14):1~51
[5]季阳,艾芊,解大.基于智能电网的清洁能源并网技术[J].低压电器.2010(4):2~25
[6]李雪明,行舟,陈振寰等.大型集群风电有功智能控制系统设计[J].电力系统自动化.2010,34(17):59~63
[7]高宗和,滕贤亮,张小白.适应大规模风电接入的互联电网有功调度与控制方案[J].电力系统自动化.2010,34(17):37~41