Scaling law of hydrogen evolution reaction for InSe monolayer with 3d transition metals doping and s

来源 :能源化学 | 被引量 : 0次 | 上传用户:chica2222
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Recently,two dimensional InSe attracts great attentions as potential hydrogen production photocatalysts.Here,comprehensive investigations on the hydrogen evolution reaction activity of InSe monolayer with 3d transition metal doping and biaxial strain were performed based on the density functional theory.Transition metal dopants significantly increase the bonding strength between H and Se,and then adjust the hydrogen adsorption free energy to 0.02 eV by Zn doping.The enhanced hydrogen evolution reaction activity results from less electron occupying H 1s-Se 4pz anti-bonding states,which is well correlated with the pz band center level.Importantly,the universal scalling law was proposed to descript the evo-lution of hydrogen adsorption free energy including both doping and strain effects.Moreover,with ap-propriate band alignment,optical absorption,and carriers separation ability,Zn doped InSe monolayer is considered as a promising candidate of visible-light photocatalyst for hydrogen production.
其他文献
Tuning the coordination environment is the research axis of single atom catalysts(SACs).SACs are commonly stabilized by various defects from support.Here,we report a lattice confined Pd SAC using MnO2 as support.Compared with the Pd clusters anchored on t
Carbon nanotubes(CNTs)with abundant surface defects are prepared by a liquid oxidation and thermal annealing method.The defective CNTs-D supported Ba-Ru/CNTs-D catalysts exhibit superior catalytic per-formance in ammonia synthesis with a TOF be increased
Rational design and precise regulation over the morphology,structure,and pore size of functional con-ducting mesoporous polymers with enriched active sites and shorten electron-ion transport pathway are extremely important for developing high-performance
The catalytic conversion of CO2 to fuels or chemicals is considered to be an effective pathway to mitigate the greenhouse effect.To develop new types of efficient and durable catalysts,it is critical to identify the catalytic active sites,surface intermed
Lithium(Li)metal is considered as one of the most promising anode materials to build next-generation high-energy-density batteries.Nonetheless,dendritic Li deposition has dramatically hindered the prac-tical applications of Li metal batteries(LMBs).Unifor
The effect of the Al2O3 structure on the performance of Pt/Ga/Al2O3 catalysts is investigated for the direct dehydrogenation of propane.The study unveils that the structure of Al3+determines the bulk structure of catalysts,particularly a high content of c
Molybdenum oxide (MoOx) is a commonly used hole extraction material in organic photovoltaics.The MoOx interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for roll-to-roll manufacturing,solution processing of MoOx without p
Lithium(Li)metal is a promising anode for the next generation high-energy-density batteries.However,the growth of Li dendrites,low coulombic efficiency and dramatic volume change limit its development.Here,we report a new synthetic poly-dioxolane(PDOL)app
Metallic Li is a promising anode material for high energy density batteries but it suffers from poor sta-bility and formation of unsafe dendrites.Previous studies demonstrated that 3D metal foams are able to improve the stability of Li metal but the prope
For designing batteries with high-rate and long-life,electronic/ionic transport and reaction must be uni-fied for metal oxide electrodes.However,it remains challenging for effectively integrating the whole sub-strate/active materials/electrolyte interface