论文部分内容阅读
针对谱聚类存在计算瓶颈的问题,提出了一种快速的集成算法,称为间接谱聚类。它首先运用K-Means算法对数据集进行过分聚类,然后把每个过分簇看成一个基本对象,最后在过分簇的级别上利用标准谱聚类来完成总体的聚类。将该思想应用于大文本数据集的聚类问题后,过分簇中心之间的相似性度度量方法可以采用常用的余弦距离法。在20-Newgroups文本数据上的实验结果表明:间接谱聚类算法在聚类准确性上比K-Means算法平均高出14.72%;比规范割谱聚类仅低0.88%,但算法所需的计算时间平均不到规范割谱聚类的1/