论文部分内容阅读
针对传统的基于Kruppa 方程摄像机自标定算法的欠鲁棒性,首次提出将鲁棒的张量投票算法用于摄像机自标定方法中。利用基于尺度不变的SIFT 算法查找并匹配出每对图像的特征点,其中待匹配图像由摄像机对同一场景从三个不同角度位置拍摄,对图像张量投票后按棒张量特征值降序排序,由此筛选得到具有鲁棒性边缘特征的前八对特征点,利用八点算法求解相应的基础矩阵和极点,根据Kruppa 方程和三维重建(SFM)算法求得摄像机参数矩阵。实验结果证明,该方法具有较高标定精度,并通过加入高斯噪声的仿真实验证明该算法是一种鲁棒的摄