论文部分内容阅读
对于遥感图像中降质模糊的问题,经典的图像复原方法由于模糊函数难以估计等原因,复原效果较差。为了避免估计模糊函数带来的困难,通过深度学习的方法对图像进行去模糊,研究了基于条件生成对抗网络(conditional generative adversarial nets,CGAN)的图像复原方法。首先创建训练网络的训练库,然后设置网络训练的初始参数,该网络以对抗的方式来使生成模型和判别模型进行交替学习,通过不断学习降质图像和清晰图像之间的差异,并结合了对抗损失和感知损失来缩小两者之间的差异,实现图像复原。