论文部分内容阅读
分组无线网络的时分多址(Time Division Multiple Access。TDMA)广播调度问题是一个经典的NP—hard组合优化问题,可用神经网络求解.混沌动力学、随机游动和迟滞动力学均能够有效地提高神经网络的优化性能.为了提高迟滞动力学在噪声混沌神经网络中的优化能力,又不增加噪声混沌神经网络的参数,将噪声混沌神经网络的噪声幅值作为Sigmoid函数的中心参数,并通过神经元的输入变化来控制噪声幅值形成迟滞环,提出了一种新型的迟滞噪声混沌神经网络.对神经元状态演化行为的研究表明,该网络能够同时演